Rev.	Descripció	n	Fecha	Elaboró	Revisó ↑	Aprobó	Autorizó
PO	D Lista de Revisiones D PORTER CUYUTLÁN PORTER CUYUTLÁN						
TERMINAL DE ALMACENAMIENTO Y REPARTO DE COMBUSTIBLES CUYU' MANZANILLO, COLIMA ESTUDIO DE RIESGO AMBIENTAL MODALIDAD ANÁLISIS DE RIESGO				CUYUTLÁN,			
Documento: ER-TCUY-001			Revisión: D	Página	1 de 106		
		Ref.: ER-TCUY-001_C Septiembre 2023					

Elaboró: **G.R.M.**

Revisó: **Porter** Revisión: **D** Septiembre **2023**

INDICE

I.	ESCEN/	ARIOS DE LOS RIEGOS AMBIENTALES RELACIONADOS CON EL PROYECTO .	5
ı	Descripc	ión del Proyecto	5
	1.1.	BASES DE DISEÑO	10
	a.	Normas	10
	1.1.1.	Proyecto civil	15
	a.	Proyecto civil para tanques de almacenamiento	15
	b.	Proyecto civil para equipos de proceso	16
	c.	Proyecto civil para sistemas auxiliares	16
	d.	Proyecto civil para barda perimetral	23
	1.1.2.	Proyecto mecánico	23
	a.	Proyecto mecánico para tanques de almacenamiento	23
	b.	Proyecto mecánico para equipos de proceso y equipos auxiliares	24
	1.1.3.	Proyecto sistema contra-incendio	25
	a.	Cantidad y capacidad de extintores	25
	b.	Sistemas de manejo de agua a presión	25
	c.	Sistemas auxiliares	29
	d.	Planos del Sistema Contra Incendio	30
	1.2.	DESCRIPCIÓN DETALLADA DEL PROCESO	31
	I.2.1.	Hojas de seguridad	43
	1.2.2.	Almacenamiento	43
	1.2.3.	Equipos de proceso y auxiliares	47
	1.2.4.	Pruebas de verificación	52
	1.3.	CONDICIONES DE OPERACIÓN	54
	1.3.1.	Especificación del cuarto de control	54
	1.3.2.	Sistema de aislamiento	55

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

	a.	Sistema de paro por emergencia	55
	b.	Sistema Contra Incendio	55
	c.	Sistema de contención	61
	d.	Planos de construcción	61
	1.4.	ANÁLISIS Y EVALUACIÓN DE RIESGOS	62
	1.4.1.	Antecedentes de accidentes e incidentes	62
	1.4.2.	Metodología de identificación y jerarquización	77
II.	DESC	CRIPCIÓN DE LAS ZONAS DE PROTECCIÓN EN TORNO A LAS INSTALACIONES	80
	II.1.	RADIOS POTENCIALES DE AFECTACIÓN	80
	II.2.	INTERACCIONES DE RIESGO	83
	II.3.	EFECTOS SOBRE EL SISTEMA AMBIENTAL	83
III.	SEÑ<i>A</i> 84	LAMIENTO DE LAS MEDIDAS DE SEGURIDAD Y PREVENTIVAS EN MATERIA AMBI	ENTAL
	III.1.	RECOMENDACIONES TÉCNICO-OPERATIVAS	84
	III.1.	. Sistemas de seguridad	95
	a.	Equipos de seguridad	95
	b.	Dispositivos de seguridad	96
	c.	Sistemas de seguridad	97
	i. S	istema de paro por emergencia	97
	ii. S	istema Contra Incendio	98
	d.	Planos	102
	III.1.2	2. Medidas preventivas	103
IV.	RESU	MEN	104
	IV.1.	SEÑALAR LAS CONCLUSIONES DEL ESTUDIO DE RIESGO AMBIENTAL	104
		HACER UN RESUMEN DE LA SITUACIÓN GENERAL QUE PRESENTA EL PROYECTO IA DE RIESGO AMBIENTAL	
	IV.3.	PRESENTAR EL INFORME TÉCNICO DEBIDAMENTE LLENADO	105
٧.		TIFICACIÓN DE LOS INSTRUMENTOS METODOLÓGICOS Y ELEMENTOS TÉCNICO	
SU	STENTAN	I LA INFORMACIÓN SEÑALADA EN EL ESTUDIO DE RIESGO AMBIENTAL	
	V.1.	FORMATOS DE PRESENTACIÓN	106

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

V.1.1.	Planos de localización	. 106
V.1.2.	Fotografías	. 106

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

I. ESCENARIOS DE LOS RIEGOS AMBIENTALES RELACIONADOS CON EL PROYECTO

Descripción del Proyecto

Descripción del proyecto

El proyecto consiste en construir una Terminal de Almacenamiento y Reparto de Combustibles (TARC Cuyutlán), localizada en Manzanillo, Colima que permita el abasto en tiempo y forma de combustibles líquidos refinados del petróleo, para el almacenamiento y distribución en la región occidente, particularmente Nayarit, Colima, Jalisco, Guanajuato y Aguascalientes.

La Terminal de Almacenamiento y Reparto de Combustibles Cuyutlán (TARC Cuyutlán) constara de lo siguiente:

- Un muelle marítimo tipo "T" con capacidad para embarcaciones desde 30,000 a 70,000 TPM, con calado operativo a 45 pies (13.73m.), con la finalidad de transferir productos petrolíferos desde buque-tanque hasta tanques atmosféricos de la Terminal de Almacenamiento y Reparto de Combustibles Cuyutlán.
- Un sistema de tuberías que transfiera los productos petrolíferos (gasolinas, diésel y gas LP) del muelle de descarga hacia el cabezal, que permita el direccionamiento de productos a llenaderas de auto-tanques, llenaderas de carro-tanques, así como hacia los tanques de almacenamiento de la TARC Cuyutlán, que por el momento sólo manejará gasolinas, diésel, y aditivos para los mismos.
- Un patio de almacenamiento con una capacidad nominal de 1,530 MB de productos petrolíferos (gasolinas y diésel) distribuidos en 14 tanques atmosféricos. Teniendo con esto una capacidad operativa de 1,250 MB aproximadamente. Esta capacidad de almacenamiento se construirá en tres etapas, una etapa Cero, con capacidad de 270 MB nominales en 5 tanques, una etapa Uno que llegará hasta 870 MB nominales en 9 tanques, y finalmente una etapa Dos, en que se alcanzarán los 1,530 MB.
- Un sistema de descarga de combustible por auto-tanque hacia el patio de almacenamiento.
- Un sistema de carga de auto-tanques y otro para carga de carro-tanques.
- Cuarto de control y edificios administrativos.
- Un sistema contra incendio.
- Área de taller y almacén.
- Sistemas de servicios generales y auxiliares.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

La Terminal de Almacenamiento y Reparto de Combustibles Cuyutlán, en la etapa Cero, contará con el muelle indicado anteriormente, con dos cabezales de descarga, uno para gasolinas y otro para diésel, cada uno de los cuales contará con capacidad para conectar una manguera de descarga al buque-tanque de 12", un patín de medición, y estará conectado a la salida a una línea submarina de 16" que llevará el producto del muelle a tierra. En la terminal se contarán con 5 tanques, para una capacidad total de almacenamiento de 270 MB nominales.

Para las Etapas Uno y Dos, se instalarán en la plataforma de operación 4 brazos de descarga marinos y 4 líneas de tubería, para descarga de producto. Las 4 líneas de descarga contarán con patines de medición con calidad para transferencia de custodia, y dirigirán los productos a un cabezal desde el cual se podrá realizar operaciones de trasvase directamente a equipos terrestres (auto-tanques y carro-tanques), así como transportar gasolinas y diésel al patio de tanques de almacenamiento. La Capacidad Nominal Proyectada para el almacenamiento en la Etapa Uno será de 870 MB, repartidos en 9 tanques, de la siguiente forma: 360 MB de para Gasolina Regular, 210 MB para Gasolina Premium y 300 MB para Diésel. En la Etapa Dos, se integrarán cinco tanques con capacidad nominal de 660 MB, con la siguiente distribución: 300 MB para Gasolina Regular, 60 MB para Gasolina Premium, y 300 MB para Diésel.

Los tanques de almacenamiento contarán con membranas impermeables en la base de los mismos, para evitar filtraciones al subsuelo en caso de fugas, adicionalmente los tanques para el almacenamiento de Gasolinas contarán con membranas flotantes internas para disminuir la formación de vapores. Optimizando la topografía del sitio el sistema operará algunas llenaderas por gravedad para cada producto tanto en autotanques como en carro-tanques.

Se tiene contemplado contar con equipo de aditivación para cada cliente, cuyas características serán definidas una vez que se cuente con los clientes y los requerimientos específicos de aditivación, así como las especificaciones de los aditivos involucrados.

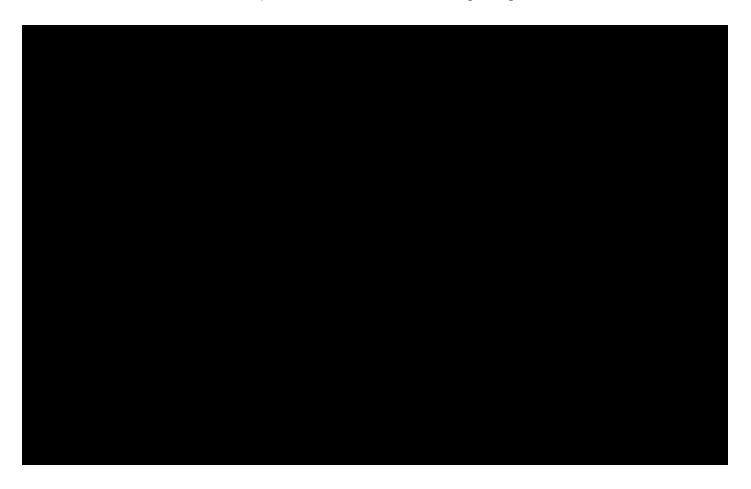
Para la eficiente operación y control de los sistemas de carga, contará con una estación de medición para transferencia de custodia y facturación por cada producto, contará con tuberías de integración, válvulas y accesorios instalados en línea para cada producto, también se contará con un sistema de recuperación de vapores de gasolinas en las llenaderas para auto-tanques y carro-tanques.

Adicionalmente se contará con tanques de agua potable y de agua cruda, un sistema automatizado contra incendio, edificios para talleres de mantenimiento y almacén, cuarto de control y oficinas administrativas y un laboratorio de campo para pruebas de control de calidad, si bien se contempla la contratación por parte del cliente de compañías de inspección independientes que realicen muestreos y análisis de los productos.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

> Fecha programada para inicio de operaciones

Actualmente se tiene programado iniciar operaciones en la Terminal de Almacenamiento de Combustibles Cuyutlan en el segundo semestre del año 2024.


Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Ubicación del proyecto (UTM)

La Terminal de Almacenamiento y Reparto de Combustibles Cuyutlán estará ubicada en el municipio Manzanillo, Colima, en el

DOMICILIO DEL PROYECTO, ART. 113 FRACCION I DE LA LGTAIP Y 110 FRACCION I DE LA LFTAIP.

La ubicación de la TARC Cuyutlán es mostrada en la imagen siguiente:

UBICACIÓN DE LA TERMINAL DE ALMACENAMIENTO Y REPARTO DE COMBUSTIBLES CUYUTLÁN.

UBICACIÓN DEL PROYECTO, ART 113 FRACCIÓN I DE LA LGTAIP Y 110 FRACCIÓN I DE LA LFTAIP.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Accesos (marítimos y terrestres)

Acceso marítimo:

El acceso al muelle de la TRAC Cuyutlán será por

DOMICILIO DEL PROYECTO, ART 113 FRACCION I DE LA LGTAIP Y 110 FRACCION I DE LA LFTAIP.

Acceso terrestre:

El acceso terrestre a la TARC Cuyutlán será por

- Contratos con compañías externas (trasvase, carga y descarga de productos).
- Autorizaciones oficiales

Las autorizaciones oficiales con las que cuenta la TARC Cuyutlán para realizar la actividad del Sector Hidrocarburos son los siguientes:

- Permiso emitido por la Comisión Reguladora de Energía (CRE) No.
- Cesión parcial de derechos con ASIPONA Manzanillo.
- > Reporte fotográfico

Los aspectos para destacar en el proyecto de la TARC Cuyutlán son mostrados en el reporte fotográfico. Ver "Anexo I.1.3" (Reporte Fotográfico).

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

I.1. BASES DE DISEÑO

Los criterios de diseño y normas utilizadas para el proyecto con base a las características del sitio y a la susceptibilidad de la zona a fenómenos naturales y efectos meteorológicos adversos, indicando el análisis y descripción de áreas identificadas como vulnerables (Terremotos o sismicidad, corrimientos de tierra, derrumbes o hundimientos, inundaciones, vulcanología, fallas geológicas, fracturas geológicas, deslizamientos, entre otros) son listados a continuación:

El diseño, construcción, pruebas y puesta en operación de la TARC Cuyutlán deberá apegarse completamente y sin excepción a los requerimientos mínimos de la norma NOM-006-ASEA-2017, para las instalaciones de Gasolina Premium, Gasolina Regular y Diesel, así como deberá apegarse a la norma NOM-015-SECRE-2013, para las instalaciones de trasvase de Gas LP.

a. Normas

NOM (Norma Oficial Mexicana)

- NOM-001-SEDE-2012. Instalaciones Eléctricas (utilización).
- NOM-002-STPS-2000. Condiciones de seguridad, prevención, protección y combate de incendios en los centros de trabajo.
- NOM-006-ASEA-2017. Especificaciones y criterios técnicos de seguridad industrial, seguridad operativa y protección al medio ambiente para el diseño, construcción, prearranque, operación, mantenimiento, cierre y desmantelamiento de las instalaciones terrestres de almacenamiento de petrolíferos y petróleo, excepto para gas licuado de petróleo.
- NOM-015-SECRE-2013. Diseño, construcción, seguridad, operación y mantenimiento de sistemas de almacenamiento de gas licuado de petróleo mediante planta de depósito o planta de suministro que se encuentran directamente vinculados a los sistemas de transporte o distribución por ducto de gas licuado de petróleo.
- NOM-016-CRE-2016. Especificaciones de calidad de los petrolíferos.
- NOM-018-STPS-2015. Sistema armonizado para la identificación y comunicación de peligros y riesgos por sustancias químicas peligrosas en los centros de trabajo.
- NOM-026-STPS-1998. Colores y señales de seguridad e higiene e identificación de riesgos por fluidos conducidos en tuberías.
- NOM-028-STPS-2004. Organización del trabajo-seguridad en los procesos de sustancias químicas.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

• NOM-093-SCFI-1994. Válvulas de relevo de presión (Seguridad, seguridad-alivio y alivio) operadas por resorte y que se fabriquen de acero y bronce.

SEMARNAT (Secretaria de Medio Ambiente y Recursos Naturales)

• SEMARNAT-07-013, Rev. 04, Capítulo VI del Programa para Prevención de Accidentes.

API (American Petroleum Institute)

- API STD 650-2007. Welded tanks for oil storage.
- API 653. Tank Inspection, repair, alteration and reconstruction.
- API Recommended Practice 582. Welding Guidelines for the Chemical, Oil and Gas Industries.
- API Standard 620. Design and Construction of Large, Welded, Low-Pressure Storage Tanks.
- API Recommended Practice 652. Lining of Aboveground Petroleum Storage Tank Bottoms.
- API Publication 937. Evaluation of the Design Criteria for Storage Tanks with Frangible Roofs.
- API Publication 937-A. Study to Establish Relations for the Relative Strength of API 650 Cone Roof, Roof-to-Shell and Shell-to-Bottom Joints.
- API Recommended Practice 2003. Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents.
- API 2610. Design, Construction, Operation, Maintenance and Inspection of Terminal & Tank Facilities.
- API 421. Design and operation of oil-water separators.
- API RP 520. Sizing, Selection, and Installation of Pressure-Relieving Devices in Refineries.
- API 521. Pressure-relieving and Depressuring Systems.
- API 599. Metal Plug Valves Flanged, Threaded, and Welding Ends.
- API 600. Cast Steel Valves.
- API 602. Gate, Globe, and Check Valves for Sizes DN 100 (NPS 4) and Smaller for the Petroleum and Natural Gas Industries.
- API 609. Butterfly Valves: Double-flanged, Lug and Water type.
- API 623. Steel Globe Valves: Double-flanged, Lug and Wafer-type.
- API RP 1004. Bottom Loading and Vapor Recovery for MC-306 Tank Motor Vehicles.
- API 2000. Venting Atmospheric and Low-pressure Storage Tanks.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

API MPMS. Manual of Petroleum Measurement Standards.

ACI (American Concrete Institute)

- ACI 318-2. Building Code Requirements for Reinforced Concrete (ANSI/ACI 318).
- ACI 350. Environmental Engineering Concrete Structures.
- AISC 3. Manual of Steel Construction.

ASME (American Society of Mechanical Engineers)

- ASME B31.3. Process piping.
- ASME B1.20.17. Pipe Threads, General Purpose (Inch) (ANSI/ASME B1.20.1).
- ASME B16.1. Cast Iron Pipe Flanges and Flanged Fittings (ANSI/ASME B16.1).
- ASME B16.5. Pipe Flanges and Flanged Fittings (ANSI/ASME B16.5).
- ASME B16.21. Nonmetallic Flat Gaskets for Pipe Flanges.
- ASME B16.47. Large Diameter Steel Flanges: NPS 26 Through NPS 60 (ANSI/ASME B16.47) Division 1; and Section IX, "Welding and Brazing Qualifications".

NFPA (National Fire Protection Association)

- NFPA. Fire Protection Handbook.
- NFPA 10. Portable fire extinguishers.
- NFPA 11. Standard for low, medium and high expansion foam.
- NFPA 13. Installation of sprinkler systems.
- NFPA 14. Standard for the Installation of Standpipe and Hose Systems.
- NFPA 15. Standard for Water Spray Fixed Systems for Fire Protection.
- NFPA 16. Standard for the Installation of Foam-Water Sprinkler and Foam-Water Spray Systems.
- NFPA 20. Installation for stationary pumps for fire.
- NFPA 22. Standard for water tanks for private fire protection.
- NFPA 25. Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems.
- NFPA 30. Flammable and combustible liquids code.
- NFPA 70. National electrical code.
- NFPA 72. National fire alarm and signal code.
- NFPA 80. Standard for Fire Doors and Fire Windows; National Fire Protection Association.
- NFPA 90°. Standard for the Installation of Air-Conditioning and Ventilating Systems; National Fire Protection Association.

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

- NFPA 704. Standard system for the identification of the hazards of materials for emergency response.
- NFPA 2001. Standard on clean agent fire extinguishing systems.
- NFPA 780. Standard for the installation of Lightning Protection Systems.

ISA (Instrument Society of America)

• ISA 5.1. Símbolos de Instrumentación y de identificación.

UL (Underwriters Laboratories)

• UL 515. Standard for Electrical Resistance Trace Heating for Commercial Applications.

ISO (International Organization for Standardization)

- ISO 10434. Bolted Bonnet Steel gate valves for the Petroleum, petrochemical and allied industries.
- ISO 14313. Petroleum and natural gas industries Pipeline transportation systems Pipelines valves.

ISGOTT (International Safety Guide for Oil Tankers and Terminals)

ISGOTT 5°. Edition, ICOS/OCIMF/IPAH. International Safety Guide for Oil Tankers and Terminals.

ASTM (American Society of Testing Materials)

- ASTM A6M/A6 9. General Requirements for Rolled Steel Plates, Shapes, Sheet Piling, and Bars for Structural Use.
- ASTM A27M/A27. Steel Castings, Carbon, for General Application.
- ASTM A36M/A36. Structural Steel.
- ASTM A53. Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless.
- ASTM A105M/A105. Forgings, Carbon Steel, for Piping Components.
- ASTM A193M/A193. Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service.
- ASTM A194M/A194. Carbon and Alloy Steel Nuts for Bolts for High-Pressure and High-Temperature Service.
- ASTM A-307. Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength bolts, carbon steel.
- ASTM A252. Especificación estándar para pilotes de tubos con costura y sin costura.

G.R.M.	Porter	D	2023
Elaboró:	Revisó:	Revisión:	Septiembre

- ASTM A325. Pernos de alta resistencia para juntas de acero estructural.
- OCIMF (Oil Companies International Marine Forum Design and Construction Specification for Marine Loading Arm, 4rd Edition).
- ROM 0.2-90. Recomendaciones en el proyecto de obras marítimas y portuarias.
- Manual de dimensionamiento portuario SCT.
- Guidelines for the design of fender systems 2002.

Ver "Anexo I.1.1" (Plano de arregio general).

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

I.1.1. Proyecto civil

a. Proyecto civil para tanques de almacenamiento

Se cuenta con el plano general de la zona donde se pretende desarrollar el proyecto (Plano en planta de las parcelas ejidales, en el ejido campos, en el municipio de Manzanillo, Colima.

En esta etapa del proyecto no se tiene definido la totalidad del predio el cual se encuentra en etapa de trámites legales para la adquisición total, sin embargo, se deben tomar en cuenta los siguientes criterios generales:

- Debe ser una instalación de bajo mantenimiento.
- Se debe considerar la infraestructura necesaria para la capacidad proyectada total (en las tres etapas de desarrollo) del proyecto de 1,530 MB.
- Se debe hacer una distribución de equipos e instalaciones de acuerdo a los espaciamientos mínimos que indique la normatividad vigente.

Cimentaciones

El diseño de las cimentaciones de todas las estructuras de concreto y de acero incluyendo tanques de almacenamiento, serán de concreto reforzado considerando los parámetros y recomendaciones emitidos en el estudio de mecánica de suelos.

En los tanques de almacenamiento de combustibles deberán considerarse la instalación de geomembranas que aíslen del subsuelo la parte inferior de cada uno de los tanques y que obstaculicen afectaciones por filtraciones hacia el subsuelo.

Tanques de Almacenamiento de productos refinados

Estos recipientes se ubicarán dentro de diques construidos a base de concreto reforzado, con acceso peatonal hacia su interior por medio de escaleras de concreto reforzado con barandal, en caso de requerirse, considerar escaleras para operación y mantenimiento de válvulas y cruce de tuberías a base de estructura metálica con rejilla electro forjada con pasamanos.

El diseño de los diques de contención de los tanques de almacenamiento será cumpliendo con el dimensionamiento normativo adecuado para la contención de la capacidad total

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

de los tanques circunscritos. Se deben prever preparaciones de entradas y salidas temporales de equipo de construcción y maniobras al dique para dar mantenimiento a los tanques.

b. Proyecto civil para equipos de proceso

Casa de bombas booster y bombas de llenaderas carro-tanques y auto-tanques

Cobertizos de estructura metálica de acero de un solo nivel con techo de lámina galvanizada recubierta de pintura a base de resinas de poliéster (tipo pintro o similar).

La techumbre de este edifico debe cubrir la totalidad del área que ocupan las bombas de llenado de carro-tanques y auto-tanques, así como las bombas booster que sean requeridas en su caso.

c. Proyecto civil para sistemas auxiliares

Drenaje pluvial

El agua pluvial libre de hidrocarburos se asignará para la recarga de los tanques de agua contra incendio, o para usos generales, bajo previo análisis y control con válvulas de bloqueo con candados hacía unos registros de captación.

El agua pluvial que se acumule dentro de diques, llenaderas y descargaderas se reutilizará bajo previo análisis y control con válvulas de bloqueo candadeadas hacía unos registros de captación, para que de ahí se conecte a la red general del drenaje pluvial por tuberías o canales a cielo abierto y se canalice hacia la laguna de captación pluvial ubicada en la parte baja de la Terminal.

La ubicación de la laguna de captación pluvial y la red de drenaje pluvial se definirá durante el desarrollo de la ingeniería básica y básica extendida.

Drenaje sanitario

Se debe colectar el efluente de aguas negras y jabonosas (servidas) producto de los sanitarios, lavabos y regaderas de forma independiente a la salida de los edificios.

Las aguas servidas se deben conducir hasta una unidad de tratamiento tipo paquete (biodigestor), de capacidad suficiente para cada área de edificios. La cantidad de

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

biodigestores se realizará de acuerdo con la demanda de uso y ubicación de las instalaciones.

Este sistema de recolección, captará las aportaciones de todos los servicios, canalizarán su corriente hacia "trampas de grasas" y posteriormente se enviarán al drenaje sanitario para su tratamiento en el biodigestor.

El agua ya tratada se conectará a una sola salida de descarga y se enviará hacia reúso de la planta como agua de riego, para el sistema contra incendio, y en último caso para posterior disposición.

Los registros de recolección final y los paquetes deberán ser diseñados y especificados, de tal modo que no exista la posibilidad de contaminar los mantos freáticos.

Drenaje aceitoso

El sistema de drenaje aceitoso se debe calcular y diseñar con la capacidad adecuada para desalojar las descargas de las áreas de proceso y aguas aceitosas provenientes de los diques y purgas de equipos y maquinarias existentes en el área de la TAR, las cuales se deben enviar a la fosa de separación de aceites la cual debe de contar con un almacenaje para el aceite recuperado, así mismo se debe evitar que los hidrocarburos de los drenajes aceitosos fluyan a los drenajes pluviales.

En la fosa de recuperación de aceites, se colocará una rejilla tipo Irving al igual que una malla para remover la materia flotante, ya que si no son eliminados pueden causar daños a los mecanismos o bloquear tuberías, esta malla también conocida como criba, tiene que ser diseñada de un material anticorrosivo para evitar el desgaste con la fricción del paso del agua.

Los registros de los drenajes aceitosos deben tener sellos hidráulicos en las tuberías de llegada a los mismos.

En el área de descarga de carro tanques se deberá considerar en la parte inferior de cada carro tanque, un registro aceitoso.

Las copas de purga deben descargar a registros aceitosos, los cuales deben tener sellos hidráulicos para evitar la propagación de un posible incendio.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

El diámetro mínimo de las tuberías que aplica en la red de los drenajes aceitosos es de 10 cm (4 in) de acuerdo con la norma vigente, aunque el resultado del diseño indique un diámetro menor.

En áreas dentro de los diques se debe considerar la aportación pluvial, en esta área se debe tener el sistema pluvial con válvulas de bloqueo (By-pass) que permitan el control selectivo de la salida de afluentes al drenaje pluvial aceitoso.

La losa de piso en el área de tanques de almacenamiento será a base de concreto con una pendiente de al menos 1% para permitir el escurrimiento y recolección de derrames. El área estará delimitada por un dique perimetral construido de concreto, dimensionado en función de la capacidad de los tanques de almacenamiento que contienen.

Tanto el dique como la losa de piso deben estar sellados de manera que no permitan ninguna filtración y resistan el contacto con hidrocarburos.

Se deberá contemplar que las redes de drenajes sean diseñadas con capacidad suficiente para un servicio adecuado a las instalaciones proyectadas.

Preferencia de materiales de tubería para drenajes: concreto, asbesto-cemento, Poli-cloruro de Vinilo (PVC), polietileno de alta densidad (PEAD), acero al carbón, fierro fundido, barro vitrificado o de fibra de vidrio con resina epóxica, entre otros, así como los requerimientos de protección al interior de los registros del drenaje químico.

Para la red de drenaje pluvial se preferirán tuberías subterráneas de Polietileno de Alta Densidad (PEAD).

Donde la topografía y la disposición de instalaciones lo permitan, principalmente en la zona fuera del área de instalaciones y en la franja ecológica, así como en el área de compensación ambienta, se podrán utilizar canales a cielo abierto recubiertos con concreto reforzado para evitar la erosión del suelo y el azolve de la laguna de captación.

Para el drenaje aceitoso preferentemente se utilizará tubería de acero al carbón soportado sobre mochetas dentro de trincheras de concreto reforzado, o en forma superficial donde se determine durante la ingeniería Básica o de detalle.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Tratamiento de efluentes

Ubicación de las plantas de tratamiento de efluentes.

La ubicación de las plantas de tratamiento de efluentes, así como la disposición final de los mismos serán determinadas durante la Ingeniería Básica y de detalle.

Los efluentes de las plantas de tratamiento se utilizarán para riego de áreas verdes o para reposición en el tanque de almacenamiento de agua contra incendio, o en su defecto se integrará a la red de drenaje pluvial existente, una vez que cumpla con la normatividad aplicable.

Durante la operación de la terminal de almacenamiento se pueden generar los siguientes efluentes y desechos.

- Lodos (óxidos) aceitosos provenientes de la limpieza de tuberías y tanques que se realiza normalmente cada 5 años.
- Cascos de llantas, provenientes de la sustitución a equipo vehicular.
- Baterías para vehículo y equipo fijo con motor de combustión interna.
- Focos LED y fotoceldas gastadas, por cambio en el sistema de alumbrado.
- Pilas de litio provenientes de las unidades de respaldo para equipo de cómputo y equipos de medición.
- Latas, brochas y enseres contaminados con pintura como parte del mantenimiento.

La disposición de todos estos efluentes y desechos debe hacerse conforme a la normatividad ambiental que aplique en el sitio.

Los efluentes serán tratados de la forma siguiente:

- Para el tratamiento del agua proveniente del drenaje aceitoso, se debe diseñar un sistema pre separador de lodos activados, donde el agua recuperada después de haber sido tratada y una vez que cumpla con la normatividad aplicable pueda utilizarse para el sistema contra incendio o riego. Deberá contar con infraestructura para la recuperación de agua contaminada y lodos aceitosos necesaria para carga en camión cisterna o tambores para su disposición final.
- La capacidad del sistema de tratamiento de agua recuperada será determinada en función de los requerimientos que analicen en la fase de ingeniería de detalle.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

 Los desechos sólidos serán depositados temporalmente en el almacén de desechos y residuos peligrosos, mientras se realiza la contratación de la compañía que realizará la disposición final.

Subestación eléctrica

Este edificio se debe desarrollar en una superficie mínima conforme a los requerimientos normativos del área eléctrica, esta debe estar ubicada en un área no clasificada como área peligrosa.

La Subestación debe incluir las siguientes áreas: Un área para tableros de distribución, centro de control de motores, trinchera, subestación compacta, para transformadores, un área para la ubicación de los paquetes para el Aire Acondicionado y Presurización.

Un área para cargador de Baterías (a definirse en la ingeniería básica extendida), el cual debe considerar para el piso recubrimientos resistentes al ácido, se colocará extracción mecánica para su ventilación, planta de emergencia que tenga capacidad suficiente para abastecer a toda la Terminal y autonomía de 24 horas en caso de que falte el suministro normal por parte de la Comisión Federal de Electricidad (considerar la correcta ubicación e identificación del tanque de combustible). Incluir tablero de acrílico con el diagrama unifilar del suministro eléctrico a la Terminal, situándolo en un lugar visible sobre los muros de este edificio.

Las dimensiones para el Cuarto de Baterías deben estar en función del número de bancos de baterías a instalar dejando espacio suficiente y seguro para inspección, mantenimiento, pruebas y reemplazo de celdas.

El edificio será construido en un nivel, para alojar los equipos y dispositivos de distribución, protección, control y señalización de acuerdo con la normatividad vigente.

Los transformadores se ubicarán sobre una base de concreto. Se debe considerar piso de concreto pulido en el interior del cuarto de gabinetes y trincheras, no se requiere falso plafón, las puertas serán de lámina de acero troquelada con resistencia al fuego para 2 hrs. y contar con barra antipánico.

El edificio debe contar con 2 puertas de acceso de doble abatimiento, una para el equipo y otra para el personal, de igual forma con doble abatimiento, ubicadas en lados opuestos del cuarto y deben ser abatibles hacia afuera.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Incluir la instalación de los tapetes aislantes antiderrapante al frente de los tableros, de un metro de ancho por toda la longitud de los tableros, con resistencia dieléctrica de 25 kilo-Volts como mínimo. Así como una conexión emergente para un generador móvil en caso de que la planta de emergencia este en mantenimiento.

La construcción del edificio debe ser resistente al fuego y el techo se debe considerar a dos aguas, además el área de transformadores debe contar con las facilidades para montar y desmontar los equipos, teniendo techo desmontable para dichas maniobras. La trinchera debe tener dos vías de acceso en sus extremos, pudiendo ser escaleras marinas.

Centro de Control de Motores (CCM)

Estructura de un nivel, estructura principal a base de concreto reforzado, estructura secundaria a base de mampostería. Cubierta base de loza de concreto reforzado Considerar integrarlo al edificio de la Subestación eléctrica.

Fosa recuperadora de aceite

Estructura mixta de concreto reforzado y estructura de acero, pasarela con rejilla electro forjada tipo Irving y malla mosquitera en cubierta, incluye cobertizos de estructura metálica para resguardo de equipos.

Área de tratamiento de aguas residuales

En la descarga del drenaje de aguas residuales que deberá estar distante de áreas tripuladas se debe ubicar la planta de tratamiento de aguas residuales cumpliendo con los lineamientos descritos en la normativa aplicable vigente.

Área de tratamiento de aguas aceitosas

El sistema de drenaje aceitoso se debe calcular y diseñar con la capacidad adecuada para desalojar las descargas de las áreas de proceso y aguas aceitosas provenientes de los diques y purgas de equipos y maquinarias existentes en el área de la TAR, las cuales se deben enviar a la fosa de separación de aceites la cual debe de contar con un almacenaje para el aceite recuperado.

Elaboró:Revisó:Revisión:SeptiembreG.R.M.PorterD2023

Área de tratamiento de agua cruda

El suministro de agua de servicios provendrá de un pozo profundo ubicado dentro de los terrenos de la TAR, por lo que se deberá considerar una planta potabilizadora, así como un tanque elevado para la regulación de la distribución a las instalaciones usuarias, estas instalaciones deberán diseñarse de acuerdo con el gasto requerido y la normatividad vigente aplicable.

Dosificación de aditivos

En un sitio cercano a las llenaderas de auto-tanques y carro-tanques, se deben considerar áreas para alojar infraestructura necesaria para alojar un sistema de reservorios y equipos de inyección para dosificación de aditivos específicos a las gasolinas solicitados por algunos clientes.

Área para tanque de regulación de agua potable

Diseñar la ubicación y estructura para soportar un tanque elevado de almacenamiento para agua potable con una capacidad mínima para abastecer los requerimientos de servicios de la TAR durante un periodo mínimo de 10 días.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

d. Proyecto civil para barda perimetral

La barda perimetral de 3 m de altura será de elementos de concreto reforzado con alambre de púas y concertina de acero inoxidable en su parte superior a todo el perímetro de la terminal. El diseño final de la cimentación será determinado por la ingeniería tomando en cuenta el estudio de mecánica de suelos.

Deberá estar estructurada con dalas de concreto reforzado en el desplante y cerramiento del muro. Sobre la dala de cerramiento en la parte superior en todo el perímetro de la barda, se anclarán los elementos de soporte para la colocación de una concertina inoxidable simple de 18" con cuchilla tipo arpón.

La barda perimetral se debe construir a una altura de 3.00 m a partir de N.P.T., en la parte superior del muro perimetral, debe considerarse la soportería necesaria para la colocación de concertina de acero inoxidable y alambre de púas galvanizado, excepto en el área de entrada principal.

I.1.2. Proyecto mecánico

a. Proyecto mecánico para tanques de almacenamiento

Los recipientes sujetos a presión deben suministrarse en estampado ASME.

Los tanques de almacenamiento de producto serán del tipo cilíndricos verticales atmosféricos de acuerdo con la normatividad vigente, construidos bajo el sistema de cúpula fija de acero al carbón con membrana interna flotante de contacto completo sello tipo zapata, para los líquidos inflamables (Gasolinas), y de techo fijo con válvulas de presión vacío para combustibles (Diésel).

Los tanques deben suministrarse con plataformas y escaleras para acceso a los registros y boquillas para instrumentos. Los tanques de almacenamiento de gasolina y diésel deben suministrarse con calibración volumétrica (método óptico y método de flotación) de acuerdo con la normativa aplicable vigente. Esta debe realizarse por el método húmedo y por el método óptico, de acuerdo con los requerimientos del API-2555 y API- MPMS Chapter 2.2B. La calibración volumétrica debe ser realizada por un laboratorio debidamente acreditado por EMA (Entidad Mexicana de Acreditación, A. C.).

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Los tanques de almacenamiento de agua contra incendio deben ser del tipo cilíndrico vertical con techo tipo cónico de acuerdo con la normativa aplicable vigente.

Los tanques de almacenamiento (gasolina, diésel y agua contra incendio) deben suministrarse con protección anticorrosiva por el interior y exterior, de acuerdo con los requerimientos de la normatividad vigente. El diseño de tanques deberá apegarse a la normativa vigente API-650.

Incluir en los tanques de almacenamiento los sistemas indicados como "Medidas Adicionales de Seguridad (M. A. S.): Se debe incluir como sistema de seguridad en los tanques, un sistema de monitoreo de fugas por el fondo (geomembrana), una red de espuma a partir del equipo paquete de presión balanceada y de agua contra incendio, cámaras de espuma tipo II como elemento principal, inyección sub superficial como protección complementaria, anillos de enfriamiento a base de agua contra incendio (incluyendo filtros de protección en las líneas de alimentación) y sistema de hidrantes contra incendio con tomas de 2 1/2" de diámetro para conexión a manguera, hidrantes monitores elevados, e instalación de detectores de mezclas explosivas, y sistema de tapones fusibles con arreglo de conexiones de corte (trim) en cada uno de los Tanques, considerando las condiciones climatológicas prevalecientes en el sitio de la obra.

La nueva instalación deberá dimensionarse de acuerdo con los lineamientos de espaciamientos y distribución de instalaciones industriales contemplados en las normas vigentes.

Los tanques de almacenamiento de producto con espesor de pared y de techo de 4.6 mm (3/16 pulg.) o mayores, se consideran auto protegidos contra descargas atmosféricas y no se requiere incluir el sistema contra descargas atmosféricas de acuerdo con la normatividad vigente.

Los tanques deberán incluir tres tubos guía para instalar el transmisor de nivel, temperatura y medición física.

b. Proyecto mecánico para equipos de proceso y equipos auxiliares

Las bombas para el uso en las gasolinas deben ser tipo centrifugas, succión lateral de un solo paso tipo OH2, deben tener una capacidad nominal de 500 gpm por tonel para Autotanques (1,000 gpm para el doble remolque) y de 1,000 gpm por llenadera de carrotanque. A menos que el diseño de la ingeniería determine otro tipo de equipo de bombeo más conveniente.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Para carcasas, bridas, cajas para baleros, tapas etc. del equipo mecánico dinámico no se aceptan materiales de fierro fundido.

La clase de las bridas de las bombas centrifugas para hidrocarburos en la succión y descarga se debe basar en la especificación API, con una clase mínima de 300#. Los sellos mecánicos de las bombas que manejen hidrocarburos deben ser dobles, de cartucho balanceados. Los materiales deben ser: cuerpo de acero inoxidable 316 L, resortes de Alloy 276 (hastelloy), caras de SiC/C/SiC/C, O-rings de vitón. El sello debe ser tipo A1, configuración 3CW-FB, es decir Face-to Back, o sea tándem.

El compresor para el servicio de aire de instrumentos debe ser del tipo tornillo libre de aceite, el sistema de enfriamiento debe ser por aire, el control del compresor es mediante presión.

El sistema de enfriamiento para el compresor de aire de instrumentos debe ser por aire.

El sistema de enfriamiento para el equipo de bombeo (si aplica) debe ser con chaquetas de enfriamiento de acuerdo a la Normatividad vigente.

El tipo de lubricación para el equipo de bombeo debe ser por grasa o aceite, el sistema de lubricación con niebla no se acepta.

Los motores eléctricos deben ser de eficiencia Premium y cumplir con la Normatividad vigente.

I.1.3. Proyecto sistema contra-incendio

a. Cantidad y capacidad de extintores

En el alcance de la ingeniería actual no se han elaborado los trabajos pertinentes para cubrir este punto.

b. Sistemas de manejo de agua a presión

Considerar el Diseño de un sistema de captación pluvial que incluya una red de drenaje pluvial independiente al drenaje sanitario y drenaje aceitoso, que permita la captación y canalización de las precipitaciones pluviales hacia una laguna de captación, cuya capacidad se obtendrá del análisis de captación hidrológica del predio con el objeto de prever un suministro autónomo para los tanques del sistema contra incendio, así como la

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

instalación de un sistema tipo paquete hidroneumático para el suministro de agua a las instalaciones.

La capacidad de flujo a manejar para la bomba de la laguna de captación debe ser congruente con la longitud y el diámetro de la tubería de la laguna a los tanques CI

El sistema de almacenamiento, bombeo y distribución de agua contra incendio, se instalará de conformidad a la normatividad vigente aplicable y conforme a los resultados de los análisis de riesgo del proyecto y constará de lo siguiente:

Se estima instalar dos tanques de agua contraincendios de una capacidad de 30 MB cada uno. No obstante, la capacidad de almacenamiento de agua contra incendio deberá ser diseñada en base a la normativa vigente aplicable y a la confiabilidad de la fuente de suministro. El almacenamiento de agua contra incendio, se debe determinar en función del requerimiento total de agua que demanda la protección de la instalación que represente el Riesgo Mayor de la instalación para su atención durante 2 (dos) horas ininterrumpidas, considerando su reposición en menos de ocho horas; de no poder darse esta reposición se debe considerar la capacidad del tanque de agua para la atención durante 4 horas ininterrumpidas.

Para este fin se consideran tanques con techo tipo cúpula fija soportado, con placa de acero al carbón la cual debe cumplir con la normativa aplicable vigente, con recubrimiento anticorrosivo en el interior y exterior del tanque, registro de purga, boquilla de 24" de diámetro para entrada hombre en el techo, (se debe realizar el análisis correspondiente para determinar el gasto y capacidad de agua en el riesgo mayor de acuerdo a norma vigente) El tanque de agua contra incendio será abastecido a través de bombeo de pozo profundo, y deberá prever tomas al exterior de la terminal para el abastecimiento por camiones cisterna, considerando en el balance que el agua de reposición de la fuente interna, más la externa sean suficientes para reponer el agua de acuerdo a la normatividad aplicable vigente.

Confirmar que la capacidad del flujo a manejar por la bomba del pozo y el diámetro de la tubería del acueducto sea congruente con respecto al gasto considerado para las bombas de alimentación del tanque de agua contra incendio y agua de servicios.

Incluir acceso pavimentado para vehículos y andadores peatonales hasta la cisterna o tanque elevado de agua de servicio con el fin de facilitar el mantenimiento y la operación del equipo de bombeo ubicado en esta área.

Instalar cobertizo con estructura metálica para proteger tanto las bombas de contra incendio, como las del sistema hidroneumático para la red de agua de servicio.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

La red de agua contra incendio de la Terminal deberá ser diseñada con forme a lo establecido en la normativa aplicable vigente y conforme a los resultados de los análisis Riesgo del proyecto.

Red de tubería contra incendio desde la casa de bombas contra incendio, debe considerar el suministro de agua Cl a la zona de los patines de medición de transferencia de custodia en el Muelle, así como el suministro a los hidrantes de apoyo en el muelle.

El sistema de bombeo para la red de agua contra incendio deberá estar conformado por bombas principales y de relevo con la capacidad suficiente para atender el riesgo mayor identificado en el análisis Riesgo. La red de agua contra incendio se deberá mantener presurizada por medio de una bomba tipo "jockey". El diseño y selección del sistema de bombeo deberá ser conforme a la normativa aplicable vigente.

Deberá contar con una red de agua contra incendio cumpliendo con la normatividad vigente, con hidrantes, monitores y tomas de camión estratégicamente ubicados de acuerdo al análisis de riesgo de la instalación, mangueras, y recirculación de agua, sistema de bombeo principal, con monitores ubicados de acuerdo al plan de emergencia derivado del análisis de riesgo de la instalación.

El sistema de bombeo de agua contra incendio deberá contar con dos bombas (o más de ser necesarias) una principal y otra de relevo operadas con motor de combustión interna con capacidad suficiente para atender el escenario más crítico de acuerdo con el análisis de riesgo, (a verificar por IPC de acuerdo al cálculo hidráulico), contando con su tablero de control, con sistema automático en el arranque. Este conjunto deberá cumplir con la normatividad vigente, Bomba "jockey" para mantener la presión en la red de contra incendio. Las conexiones ramal-cabezal de succión y descarga de los equipos de bombeo deberán ser con accesorios a 45°, con el fin de evitar taponamientos hidráulicos.

Deberá contar con un paquete de presión balanceada que cuente con su tanque de almacenamiento con material resistente al líquido espumante tipo AR-AFFF con capacidad suficiente para 4 horas de operación continua para el riesgo mayor (NOM -006-ASEA 2017), se deberá incluir inyección superficial e inyección subsuperficial a los tanques de almacenamiento de combustibles, se deberá incluir un recubrimiento externo e interno adecuado para evitar la corrosión en el mismo tomando en cuenta la normatividad aplicable vigente.

El Sistema digital de monitoreo y control contra incendio deberá ser controlado en forma independiente al SDMC de proceso a través un sistema automatizado de Gas y Fuego (SG&F).

Los tanques de almacenamiento deberán contar con anillos de enfriamiento sectorizados y contar con un sistema de proporción de espuma de presión balanceada para la extinción de fuego.

Elaboró:Revisó:Revisión:SeptiembreG.R.M.PorterD2023

Las áreas de riesgo que se deben considerar en esta etapa para ser protegidas por el sistema son: Brazos de Descarga Marinos, Área de Patines de Medición, Tanques de Almacenamiento, área de carga y descarga de Carrotanques y autotanques, Cobertizo de bombas, Talleres Oficinas Administrativas, Cuarto de control de motores (CCM), Almacenes de residuos peligrosos, Cuarto de baterías. Las áreas indicadas deberán ser ratificadas o complementadas en el análisis de riesgo.

Dentro del alcance del desarrollo de la ingeniería se deberá diseñar una Red de circuitos de tuberías con su sistema de bombeo que permitan disponer desde el muelle con agua de mar para el combate a la eventualidad determinada como Riesgo Mayor. Para este fin se deberán analizar las siguientes alternativas:

- a). Bombeo directo de agua de mar a la red CI, debiendo preverse para este caso sectorizar la red CI en circuitos independientes específicos para este sistema, por ejemplo, podría ser únicamente al circuito de los anillos de enfriamiento de los Tanques de almacenamiento si este fuera el Riesgo Mayor determinado en el Análisis de Riesgo.
- b). Bombeo para reabastecer con agua de mar los niveles de los tanques contra incendio.

En cualquier caso, las tuberías válvulas y accesorios del circuito de agua de mar deberán cumplir con la normatividad, especificaciones y/o recomendaciones para uso de agua de mar.

Considerar una Red de tubería para el sistema de proporción de espuma desde la casa de bombas contra incendio hasta la zona del Muelle, o en su defecto la instalación del suministro de espuma en la plataforma de operación del muelle, contemplando las facilidades para el suministro periódico del agente espumante en el punto de almacenamiento seleccionado.

El sistema contra incendio constará al menos de los siguientes elementos:

La operación del sistema contraincendios SG&F se hará en forma automática, independiente del sistema SDMC. Tendrá un tablero de control para abrir y cerrar las válvulas motorizadas arranque y paro de motores eléctricos tanto de las bombas contra incendio como las del equipo de presión balanceada.

Los sistemas SDMC y SG&F son una parte integral del proyecto de la terminal de almacenamiento y reparto y deberá incluirse la Ingeniería y construcción de un cuarto de control central y de alojamiento de gabinetes que albergaran los equipos de cómputo y los equipos del subsistema de control Supervisorio, equipos de control considerados en el SDMC incluyendo los equipos de cómputo, control y respaldo de energía del SG&F. La ingeniería deberá incluir el cálculo para el dimensionamiento de aire acondicionado, sistemas de

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

energía interrumpible (UPS) y sistemas de tierras lo cual debe estar conforme a la normativa vigente aplicable.

c. Sistemas auxiliares

Se requiere la instalación del sistema de detección de fuego, humo y mezclas explosivas en las áreas de proceso que determine el análisis correspondiente. En los edificios administrativos; oficinas, vigilancia y cuartos de control de operaciones solamente se instalarán el sistema de detección de humo.

Deben considerarse Estaciones manuales de alarma por fuego en exteriores, instalando alarmas sectoriales (semáforos) con color verde, ámbar y rojo, a su vez identificándolos con alarmas de sonido sectoriales incluyendo generador de tonos.

Detección de Humo

Se deberá incluir un Tablero de detección de humo para señales de los dispositivos de detección y alarma en interior de edificios estos estarán instalados en: Oficinas administrativas generales, Cuarto de Control, Caseta de vigilancia, Subestación eléctrica y CCM, Taller de mantenimiento Almacén, laboratorio de control de calidad.

La ubicación del tablero de los detectores y alarmas se determinará durante el desarrollo de la ingeniería de detalle.

Detectores de Mezclas Explosivas

Los detectores de mezclas explosivas deben ser ubicados en: Llenaderas de auto-tanques y carro-tanques, áreas de bombas de proceso, área de tanques de almacenamiento de producto, almacén de residuos peligrosos, paquete de separación de aceites y en el área del Muelle, así mismo donde el estudio de riesgo lo indique.

Detectores de Flama

Los detectores de flama deben ser ubicados en: Llenaderas de auto-tanques y carrotanques, áreas de bombas de proceso, área de tanques de almacenamiento de producto, almacén de residuos peligrosos, paquete de separación de aceites y en el área del Muelle, así mismo donde el estudio de riesgo lo indique.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

d. Planos del Sistema Contra Incendio

Código de Archivo	Código de Documento	Descripción
SCI-001 REV-A	SCI-001	Diagrama de Tubería e Instrumentación - Sistema Contra Incendio
POR-TARC-TUB-ACI-001 REV-D	POR-TARC-TUB-ACI-001	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-002 REV-D	POR-TARC-TUB-ACI-002	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-003 REV-D	POR-TARC-TUB-ACI-003	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-004 REV-D	POR-TARC-TUB-ACI-004	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-005 REV-D	POR-TARC-TUB-ACI-005	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-006 REV-D	POR-TARC-TUB-ACI-006	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-007 REV-D	POR-TARC-TUB-ACI-007	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-008 REV-D	POR-TARC-TUB-ACI-008	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-009 REV-D	POR-TARC-TUB-ACI-009	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-010 REV-D	POR-TARC-TUB-ACI-010	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-011 REV-D	POR-TARC-TUB-ACI-011	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-012 REV-D	POR-TARC-TUB-ACI-012	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-013 REV-D	POR-TARC-TUB-ACI-013	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-014 REV-D	POR-TARC-TUB-ACI-014	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-015 REV-D	POR-TARC-TUB-ACI-015	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-016 REV-D	POR-TARC-TUB-ACI-016	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-017 REV-D	POR-TARC-TUB-ACI-017	Plano Detalle - Tuberías de Agua Contra Incendio
POR-TARC-TUB-ACI-PGT-001 REV-D	POR-TARC-TUB-ACI-PGT-001	Plano General de Tuberías de Agua Contra Incendio

Tabla 1. Listado de planos de Sistema contra incendio.

Ver "Anexo I.1.2." (Planos sistema contra incendio).

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

I.2. DESCRIPCIÓN DETALLADA DEL PROCESO

Propósito funcional de la instalación

El propósito funcional de la Terminal de Almacenamiento y Reparto Cuyutlán es realizar la descarga, trasvase, almacenamiento y carga de productos petrolíferos (Gasolinas, Diésel y Gas LP). El almacenamiento tendrá una capacidad Nominal Total de 1,530 MB, el muelle contará con capacidad para operar buques de hasta 90,000 TM de desplazamiento (70,000 TMPM), para carga de autotanques se contará con 19 posiciones de llenado (6 Gasolina Regular, 3 Gasolina Premium, 6 Diésel y 4 Gas LP), 12 posiciones de llenado para carrotanques (3 Gasolina Regular, 2 Gasolina Premium, 3 Diésel y 4 Gas LP), y la espuela podrá albergar hasta 200 carrotanques. Con esta capacidad se atenderá el abastecimiento diario de la zona de influencia, con una capacidad de carga de hasta 80 MB por día en autotanques, y un tren unitario (56 a 66 MB) por día.

Capacidad de las instalaciones

Tendrá una capacidad Nominal para almacenar 270 MB en la Etapa Cero, 870 MB en la Etapa Uno, y alcanzar 1,530 MB en la Etapa Dos (con fecha de ejecución a futuro), distribuidos de la siguiente manera:

Etapa Cero

Diésel 0 MB

Gasolina Regular 140 MB (2 Tanques de 55 MB y 1 Tanque de 30 MB)
Gasolina Premium 130 MB (1 Tanque de 100 MB y 1 Tanque de 30 MB)

Etapa Uno

Diésel 300 MB (2 Tanques de 150 MB)

Gasolina Regular 360 MB (2 Tanques de 150 MB y 2 Tanques de 30 MB)
Gasolina Premium 210 MB (1 Tanque de 100 MB y 2 Tanques de 55 MB)

Etapa Dos

Diésel 600 MB (4 Tanques de 150 MB)

Gasolina Regular

660 MB (4 Tanques de 150 MB y 2 Tanques de 30 MB)

Gasolina Premium

270 MB (1 Tanque de 100 MB y 2 Tanques de 55 MB

y 1 Tanque de 60 MB)

^{*} En aquellos casos que se requiera recibir y almacenar Diésel, el mismo se manejará dentro de alguno de los tanques de Gasolina Premium.

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

> Condiciones de recibo y entrega de productos:

Condiciones: Patín de Medición – Tanques de almacenamiento:

El Recibo de producto de buque-tanques hacia los tanques de almacenamiento se efectuará directamente con el bombeo de los equipos dinámicos de bombeo del buque tanque. Se dispondrá de un peine de tuberías en diámetro de 16" (A verificar por ingeniería de detalle) independientes para cada producto, el cual contará con un manifold y válvulas de control que permitan efectuar las derivaciones de los diferentes productos hacia los tanques correspondientes.

La alimentación de los productos será en fase líquida a temperatura ambiente, los tres productos se recibirán principalmente por buque-tanque, pero se deberá considerar la infraestructura necesaria para recibir eventualmente por medio de autotanques.

Condiciones: Tanques de almacenamiento – llenaderas

Para el movimiento de productos desde tanques de almacenamiento a llenaderas se considera ubicar los diques de los tanques de almacenamiento en 3 (tres) Plataformas Constructivas propuestas de la siguiente manera:

Tanque	Capacidad	Producto
TV-01 *	150 MB	Gasolina Regular
TV-02 *	150 MB	Gasolina Regular
TV-03 *	150 MB	Diésel
TV-04 *	150 MB	Diésel
TV-10 **	150 MB	Diésel
TV-011 **	150 MB	Diésel

Tabla 2. Tanques de plataforma 1.

Tanque	Capacidad	Producto
TV-012 **	150 MB	Gasolina Regular
TV-013 **	60 MB	Gasolina Premium
TV-014 **	150 MB	Gasolina Regular

Tabla 3. Tanques de plataforma 2.

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

Tanque	Capacidad	Producto
TV-05	150 MB	Gasolina Regular
TV-06	150 MB	Gasolina Regular
TV-07	150 MB	Gasolina Premium
TV-08	150 MB	Gasolina Premium
TV-09	150 MB	Gasolina Premium

Tabla 4. Tanques de plataforma 3.

Por lo que el movimiento de productos hacia las áreas de despacho a auto-tanques y a carro-tanques se propone se realice de la siguiente manera lo cual deberá ser revisado en desarrollo de la ingeniería y en su caso ajustado:

Los Tanques de Diesel de la plataforma 1: TV-03, TV-04, TV-10 y TV-11, requerirán bombas Booster para proporcionar presión adecuada de succión a los equipos de bombeo en la casa de bombas de llenaderas.

Los Tanques de Gasolina Regular de la plataforma 1: TV-01 y TV-02, así como los Tanques de Gasolina Regular de la plataforma 2: TV-12 y TV-14, requerirán también bombas Booster para proporcionar presión adecuada de succión a los equipos de bombeo en la casa de bombas de llenaderas.

El tanque de Gasolina Premium de la plataforma 2: TV-13, requerirá bomba Booster para para proporcionar presión adecuada de succión a los equipos de bombeo en la casa de bombas de llenaderas.

Los Tanques de Gasolina, tanto Regular como Premium, de la plataforma 3: TV-05, TV-06, TV-07, TV-08 y TV-09, no requerirán bombas Booster y por gravedad podrán proporcionar presión adecuada de succión a los equipos de bombeo en la casa de bombas de llenaderas, ya que se estima que las condiciones de salida de dichos tanques alcanzarán una presión de 1.4 Kg/cm², a temperatura ambiente.

Las condiciones de llegada a las llenaderas se deben determinar en el alcance de la ingeniería en base al gradiente hidráulico entre los tanques de almacenamiento y el área de llenaderas.

Para el caso de los productos que requieren bombeo, las condiciones de salida y llegada, serán determinadas en el desarrollo de la ingeniería en base al gradiente hidráulico respectivo.

^{*} Tanques que serán construidos en la Etapa Uno, a futuro.

^{**}Tanques que serán construidos en la Etapa Dos, a futuro.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Condiciones requeridas de los productos en llenaderas:

En el área de Llenaderas tanto de carro-tanques como de auto-tanques, los productos petrolíferos serán descargados en fase líquida hacia auto-tanques y carro-tanques los cuales deben ser transferidos por un sistema de llenado por el fondo que maneje una presión de proceso y temperatura conforme a la normatividad vigente.

> Características mínimas para la operación:

La conducción desde los tanques hacia las llenaderas dependiendo de la ubicación física de los mismos será por bombeo y/o gravedad, mientras que las bombas de los buquetanques proporcionarán la presión para las operaciones de trasvase.

El sistema contara con facilidades para el manejo y trasiego entre tanques, y los mismos deberán contar con un diseño que permita una rápida reasignación de servicio, contará con una estación de medición para transferencia de custodia y facturación de cada producto que se despache en sus llenaderas. Las tuberías de integración, válvulas y accesorios instalados en línea estarán segregados de manera que cada producto utilice líneas dedicadas.

El diseño de las llenaderas deberá ser flexibles y debe permitirles utilizarse como descargadoras convencionales de auto-tanque y carro-tanque.

Se contará igualmente con un sistema de recuperación de vapores, tanques de agua potable y de agua cruda, un sistema automatizado de contra incendio, edificios para talleres de mantenimiento y almacén, cuarto de control de operaciones y laboratorio de campo para control de calidad y los servicios auxiliares requeridos.

La instalación contemplará la minimización de efluentes, contando con una planta potabilizadora de agua que permita el reusó de los drenajes pluvial y sanitario, además de los equipos necesarios para la separación de hidrocarburos del drenaje aceitoso, de forma que toda el agua de la terminal se pueda reutilizar para riego o en el sistema de agua contra incendio. Los residuos finales serán dispuestos mediante una compañía especializada en manejo de residuos peligrosos.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Descarga de productos

La descarga de los productos se realizará en la Etapa Cero mediante mangueras flexibles de 12", mientras que para las Etapas Uno y Dos será por medio de brazos marinos de descarga los cuales deberán contar con un sistema de control local que este monitoreado a distancia desde el cuarto de control central, estos brazos marinos deberán apegarse a la norma internacional "Design and Construction Specification for Marine Loading Arms", Fourth Edition 2019 del Oil Companies International Marine Forum (OCIMF).

El Recibo de producto de buque tanque, tanto para trasvase como hacia los tanques de almacenamiento se efectuará directamente con el bombeo de los equipos dinámicos de bombeo del buque tanque. Se dispondrá de un peine de tuberías en diámetro de 16" (a confirmar por ingeniería de detalle) independientes para cada producto, el cual contará con un manifold y válvulas de control que permitan efectuar las derivaciones de los diferentes productos hacia los tanques correspondientes. Adicionalmente a partir de la Etapa Uno se tendrá una línea de retorno de vapores para el Gas LP, que se conectará mediante manguera al cabezal apropiado del buque tanque.

La recepción de la Gasolina Regular, Gasolina Premium y el Diésel en fase líquida a temperatura ambiente, los tres productos se recibirán principalmente por buque tanque, pero se deberá considerar la infraestructura necesaria para recibir eventualmente por medio de autotanques.

Por parte del Gas LP, éste se recibirá de buque tantes totalmente refrigerados ("Fully Ref"), o parcialmente refrigerados ("Semi Ref"), por lo que se recibirá en fase líquida, a temperatura aproximada de -5°C a 0°C.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Almacenamiento de productos

La Terminal de Almacenamiento y Reparto contará con una capacidad Nominal instalada de 1,530 MB con la siguiente capacidad de tanques para cada producto, una vez que se hayan desarrollado las dos etapas.

Producto	Capacidad Tanques de Almacenamiento					
rioducio	150 MB	100 MB	60 MB	55 MB	30 MB	
Gasolina Regular	4	-	-	-	2	
Gasolina Premium	-	1	1	2	-	
Diésel	4	-	-	-	-	

Tabla 5. Capacidad de almacenamiento.

Los tanques de almacenamiento para gasolinas deben ser verticales con techo fijo, membrana interna flotante y venteos; para diésel serán de techo fijo con válvula de presión vacío con venteo a la atmosfera.

Todos los tanques deben cumplir con la norma NOM-006-ASEA-2017 que te remite al diseño por API 650.

Para el desarrollo del proyecto no se considera instalar tanques de recuperados (slop) derivado de que esta terminal no recibirá producto por poliducto y por lo tanto no se recibirán interfaces de producto contaminado. No se recibirá producto fuera de especificación solicitada.

Los tanques deberán contar con tubo difusor en el interior, que permita que la velocidad de llegada del producto proveniente de la descarga de Buque tanque, carrotanque o autotanque, se mantenga dentro de los parámetros de un flujo cercano al laminar en el interior del tanque.

Los tubos de entrada y salida deben estar instalados a la mínima distancia permisible del fondo para disminuir el volumen del fondaje al menor posible.

Protección para descargas eléctricas atmosféricas mediante un sistema de aterrizaje en sus 04 puntos cardinales.

Debe contar con barandal completo en la parte superior de la cúpula, punto de sujeción de arnés y conexión a tierra, punto de muestreo y punto de ajuste del sistema de medición.

El tubo para drene será del tipo telescopio, y el área de drene separada de la pared del tanque a la distancia suficiente que facilite la colocación de la cámara de vacío para su inspección.

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

Deberá contar con 2 accesos para inspección interna de tamaño tal que faciliten el acceso cómodo del inspector y del equipo para inspección.

Los tanques de Almacenamiento deberán ser diseñados, construidos y probados cumpliendo completamente con la normatividad aplicable.

Reparto de producto

Islas para llenado de auto-tanques

Para la Etapa Cero, la Terminal contará con seis posiciones para llenado de autotanques de doble remolque (tipo "Full"), las cuales podrán manejar los productos de forma indistinta.

Para las Etapas Uno y Dos, se construirán las instalaciones necesarias para que la Terminal cuente con 19 posiciones de llenado de auto-tanques las cuales se repartirán de la siguiente forma. Esto podrá ser modificado en la etapa de ingeniería de detalle según convenga al proyecto.

Producto	Sencillo	Full	Total
Gasolina Regular	2	4	6
Gasolina Premium	1	2	3
Diésel	2	4	6
Gas LP	0	4	4
Total	5	14	19

Tabla 6. Islas de llenado para auto-tanques.

Se deberá contar con la rotulación adecuada al manejo de cada producto, en cumplimiento con los estándares y normatividad correspondiente.

Cada brazo de llenado estará conectado a los diferentes cabezales dedicados de cada tipo de combustible, por lo que la apertura de las válvulas para seleccionar el combustible deseado será automatizado, así como el arranque de la bomba; todo lo anterior con el fin de evitar riesgos y errores operativos acerca de la carga de combustible incorrecto o de contaminación de los productos. Cada brazo de llenado para autotanques deberá operar con un flujo de 500 GPM nominal. Todas las posiciones de llenado contarán con la instrumentación propia para la medición del combustible y temperatura, así como para el control de la carga de producto, todos los instrumentos deberán ir montados sobre un "PATIN DE MEDICION" mismo que como mínimo deberá contar con: Medidor de flujo másico tipo Coriolis, válvula de bloqueo, filtro (del tipo más conveniente para el proceso), válvula para el control de carga, sensor de temperatura, unidad de control local, monitor de prevención de sobrellenado y detector de conexión a tierra, misma que deberá ser un permisivo de inicio de carga y enviar señal de paro a la bomba correspondiente de la isla

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

de llenado seleccionada, así como cople de ruptura, mangueras y accesorios de conexión para auto-tanques.

• Posiciones para llenado de carro-tanques

Para la Etapa Cero, la Terminal contará con seis posiciones de llenado de carro-tanques, que podrán operar con cualquiera de los productos (excepto Gas LP).

Para las Etapas Uno y Dos, se realizarán las adecuaciones necesarias para que la Terminal cuente con 12 posiciones de llenado de carrotanques repartidas de la siguiente forma:

Producto	No. Posiciones
Gasolina Regular	3
Gasolina Premium	2
Diésel	3
Gas LP	4
Total	12

Tabla 7. Posiciones de llenado para carro-tanques.

Los datos indicados son preliminares, durante el desarrollo de la ingeniería se determinará la longitud disponible para la construcción y/o rehabilitación de laderos de Ferrocarril, y dependiendo del desarrollo de la demanda esperada por producto se podrá determinar el número de islas reales requeridas.

Cada posición de llenado repartirá un flujo de 1,000 gpm; para cada posición de llenado se debe considerar un sistema de medición y control con los siguientes elementos, como mínimo:

- Unidad de control local
- Válvulas de bloqueo
- Filtro
- Monitor óptico de prevención de sobre llenado
- Medidor de flujo
- Elemento de temperatura tipo RTD
- Válvula operada por solenoide
- Detector de tierra física

La cantidad y dimensiones de estos elementos deben ser determinadas durante el desarrollo de la ingeniería del proyecto y su diseño debe cumplir con la normatividad vigente.

Elaboró:Revisó:Revisión:SeptiembreG.R.M.PorterD2023

Sistema de bombeo

El Recibo de producto de buque-tanque, tanto para trasvase como hacia los tanques de almacenamiento se efectuará directamente con el bombeo de los equipos dinámicos de bombeo del buque-tanque. Se dispondrá de un peine de tuberías independientes para cada producto, el cual contará con un cabezal y válvulas de control que permitan efectuar las derivaciones de los diferentes productos hacia las llenaderas de autotanques, llenaderas de carro-tabques, o hacia los tanques de almacenamiento correspondientes.

Para el movimiento de productos desde tanques de almacenamiento a llenaderas se considera ubicar los diques de los tanques de almacenamiento en plataformas constructivas propuestas en la cotas +10, +20 y una tercera en la +25, las cuales se definirán en la fase de ingeniería básica, por lo que el sistema de bombeo para el despacho a auto-tanques y a carrotanques se efectuara conforme se describe en el apartado: 5.5.2 Condiciones: Tanques de almacenamiento - llenaderas:, de estas Bases de Usuario.

Durante el desarrollo de la ingeniería se deberá considerar el diseño del diámetro adecuado de las tuberías de tanques a llenaderas de autotanques y carrotanques en base a la longitud de las tuberías, cotas piezométricas, tiempos de llenado, demanda de producto y a los tiempos de reparto.

Para un eventual caso de requerirse el bombeo de producto desde carrotanques y autotanques a Tanques de Almacenamiento se deberá prever dejar únicamente la preparación para una bomba principal y un relevo, las bombas a considerar en este caso deberán ser centrífugas y cumplir con la normativa vigente, la bomba de relevo debe estar instalada en el mismo lugar que las bombas de proceso y deben contar con un peine de distribución para direccionar el producto a los tanques deseados.

Paro por emergencia

Las Instalaciones de la Terminal deben ser diseñadas de forma tal que a falla o contingencias se realice un paro ordenado.

El Sistema de Paro de Emergencia de la Terminal de Almacenamiento y Reparto, debe ejecutar el paro ordenado en caso de que se presente una contingencia que ponga en riesgo la seguridad del personal, las instalaciones y/o el medio ambiente. Adicional a otras funciones de seguridad que se deriven del análisis de riesgo, se requiere que a través del sistema de paro de emergencia se efectúen las siguientes acciones de seguridad:

- Suspensión de las operaciones de llenaderas de autotanques y carrotanques
- Cierre de las válvulas de salida a llenaderas de autotanques y carrotanques de los tanques de almacenamiento.
- Suspensión de las operaciones de descarga de buque tanques, carrotanques y autotanques; y paro del equipo de bombeo en su caso.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

El sistema de paro por emergencia deberá ser autónomo del sistema de operación monitoreo y control de la terminal.

Flexibilidad de operación

Las tuberías de descarga provenientes del muelle marítimo podrán recibir los cuatro tipos de producto, por medio de manipulación de válvulas se enviará el producto a las llenaderas o tanque de destino.

Una vez que se desarrollen las tres etapas (Cero, Uno y Dos), para gasolina Regular se tendrán cuatro tanques de 150 MB y dos de 30 MB; para gasolina Premium se tendrán un tanque de 100 MB, un tanque de 60 MB y dos tanques de 55 MB y para Diésel se contará con cuatro tanques de 150 MB, cada tanque contará con válvulas a la entrada, la salida y seccionamiento que permita poder dar mantenimiento preventivo y/o correctivo a cualquiera de los tanques sin sacrificar el almacenamiento y disponibilidad de ningún producto.

Sistema de Monitoreo y Control

Para la operación automática de la Terminal de Almacenamiento y Reparto de Combustibles de Cuyutlán (TAR), las instalaciones deberán contar con un Sistema Digital de Monitoreo y Control (SDMC) cuya función es la integración de subsistemas básicos para facilitar el control y la administración de las operaciones de la Terminal. Los subsistemas básicos mínimos dentro de la terminal son los siguientes:

- Telemedición y control de tanques.
- Medición y control de llenaderas.
- Medición y control de descargaderas.
- Control de válvulas Motorizadas.
- Medición y control del Muelle.
- Monitoreo y control de parámetros eléctricos.
- Control de accesos.
- Monitoreo de variables de proceso (Temperatura, Presión, Flujo, etc.)
- Monitoreo del sistema de Gas y Fuego

Así mismo para una operación confiable, se requerirá de servicios auxiliares mínimos enlistados a continuación:

- Agua de servicios.
- Agua Contra incendio.
- Aire de Planta e Instrumentos.
- Sistemas de drenajes.
- Sistemas de tratamiento de efluentes.
- Sistemas de inyección de agentes químicos.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023
--

- Sistemas contra incendio.
- Sistemas de Gas y Fuego.
- Sistema de alivio de presión.
- Suministro, distribución y respaldo de Energía eléctrica.
- Sistemas de comunicación y voceo.
- Sistema Circuito cerrado de televisión.
- Sistema de Detección de intrusión en Barda perimetral.
- Sistemas de seguridad física.
- Sistema de aire acondicionado.
- Sistema de paro de emergencia.
- Sistema de telecomunicaciones.

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

Las características de las sustancias manejadas en la Terminal son mostradas en la tabla siguiente:

Nombre				sgo nico			Flujo en m³/h o			Capacidad		Cantidad de reporte	
químico de la sustancia (IUPAC)	No. CAS	C R	}	E T	·	I	millones de pies cúbicos estándar por día (MPCSD)	Concentración	Máxima de proceso (Ton/Día)	Máxima de transporte (Ton/Día)	Máxima de almacenamiento (Ton)	Tipo de almacena miento	en el Listado de Actividades Altamente Riesgosas
Gasolina	8006-61-9)	X >	()	X	208.97 m³/h	100%			152,512.19	Tanque Vertical	1
Diésel	68476-34-6)	X >	()	Χ	208.97 m³/h	100%			63,338.39	Tanque Vertical	1
Gas Licuado de Petróleo	68476-85-7							100%			N/A	N/A	

Tabla 8. Resumen de sustancias peligrosas.

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

I.2.1. Hojas de seguridad

Las hojas de datos de seguridad de los productos a manejar en la Terminal de Almacenamiento y Reparto de Combustibles Cuyutlán están en el "**Anexo I.2.1**" (Hoja de datos de seguridad).

1.2.2. Almacenamiento

> Proyecto.

La TARC Cuyutlán contará con una capacidad nominal de almacenamiento de 1,530 MB (gasolinas y diésel), distribuido en 14 tanques atmosféricos. Una capacidad operativa de 1,250 MB aproximadamente, la cual se construirá en tres etapas, una Etapa Cero, con capacidad de 270 MB nominales en 5 tanques, una Etapa Uno que llegará hasta 870 MB nominales en 9 tanques, y finalmente una Etapa Dos, en que se alcanzarán los 1,530 MB.

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

La distribución de la capacidad de almacenamiento por tanque es mostrada en la tabla siguiente:

No. tanque	TAG de tanque	Capacidad nominal (barriles)	Producto a almacenar
1	TV-01	150,000	Gasolina Regular
2	TV-02	150,000	Gasolina Regular
3	TV-03	150,000	Diésel
4	TV-04	150,000	Diésel
5	TV-05	30,000	Gasolina Regular
6	TV-06	30,000	Gasolina Regular
7	TV-07	100,000	Gasolina Premium
8	TV-08	55,000	Gasolina Premium
9	TV-09	55,000	Gasolina Premium
10	TV-10	150,000	Diésel
11	TV-11	150,000	Diésel
12	TV-12	150,000	Gasolina Regular
13	TV-13	60,000	Gasolina Premium
14	TV-14	150,000	Gasolina Regular

Tabla 9. Distribución de la capacidad de almacenamiento por tanque.

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

El presente proyecto se encuentra actualmente en una etapa de ingeniería de diseño, las características de los equipos principales son mostradas en la tabla siguiente:

Descripción	TAG	Año de fabricación	Capacidad en m³	Dimensiones	Código de Diseño	Materiales de construcción	Tiempo de vida útil	Sustancia manejada	Estado físico de la sustancia	Presión de prueba hidrostática kg/cm²	*Flujo de diseño y operación Mín./ Normal/ Máx.	*Presión de diseño y operación en kg/cm² Mín./ Normal/ Máx.	*Temperat ura de diseño y operación en °C Mín./ Normal/ Máx.	Sistemas de control, sistemas de seguridad y medios de contención	Ubicación
Tanque de almacenamient o de gasolina Regular	TV-01/TV-02 (TV-12, TV-14 Futuro)	S/Inf.	23850 m ³	D:150 pies	API 650	Acero al carbón	20 años	Gasolina regular	Líquido	N/A	150 MB	Operación : atm	Operación : 32°C	Sistema Digital de Monitoreo y Control (SDMC). Sistema de paro de emergencia. Sistema de gas y fuego. Sistema contra incendio	Área de Tanques de almacen amiento
Tanque de almacenamient o de diésel	TV-03/TV-04 (TV-10, TV-11 Futuro)	S/Inf.	23850 m ³	D:150 pies	API 650	Acero al carbón	20 años	Diésel	Líquido	N/A	150 MB	Operación : atm	Operación : 32°C	Sistema Digital de Monitoreo y Control (SDMC). Sistema de paro de emergencia. Sistema de gas y fuego. Sistema contra incendio	Área de Tanques de almacen amiento
Tanque de almacenamient o de gasolina regular	TV-05/TV-06	S/Inf.	4770 m ³	D:73.3 3 pies	API 650	Acero al carbón	20 años	Gasolina regular	Líquido	N/A	30 MB	Operación : atm	Operación : 32°C	Sistema Digital de Monitoreo y Control (SDMC). Sistema de paro de emergencia. Sistema de gas y fuego. Sistema contra incendio	Área de Tanques de almacen amiento

Elaboró: Revisó: Revisión: Septiembre
G.R.M. Porter D 2023

Descripción	TAG	Año de fabricación	Capacidad en m³	Dimensiones	Código de Diseño	Materiales de construcción	Tiempo de vida útil	Sustancia manejada	Estado físico de la sustancia	Presión de prueba hidrostática kg/cm²	*Flujo de diseño y operación Mín./ Normal/ Máx.	*Presión de diseño y operación en kg/cm² Mín./ Normal/ Máx.	*Temperat ura de diseño y operación en °C Mín./ Normal/ Máx.	Sistemas de control, sistemas de seguridad y medios de contención	Ubicación
Tanque de almacenamient o de gasolina premium	1V-08/TV-09	S/Inf.	8745 m³	D:100 pies	API 650	Acero al carbón	20 años	Gasolina premium	Líquido	N/A	55 MB	Operación : atm	Operación : 32°C	Sistema Digital de Monitoreo y Control (SDMC). Sistema de paro de emergencia. Sistema de gas y fuego. Sistema contra incendio	Área de Tanques de almacen amiento
Tanque de almacenamient o de gasolina premium	TV-07	S/Inf.	15900 m³	D:134 pies	API 650	Acero al carbón	20 años	Gasolina premium	Líquido	N/A	100 MB	Operación : atm	Operación : 32°C	Sistema Digital de Monitoreo y Control (SDMC). Sistema de paro de emergencia. Sistema de gas y fuego. Sistema contra incendio	Área de Tanques de almacen amiento
Tanque de almacenamient o de gasolina premium	TV-13 futuro	S/Inf.	9540 m³	S/Inf.	API 650	Acero al carbón	20 años	Gasolina premium	Líquido	N/A	60 MB	Operación : atm	Operación : 32°C	Sistema Digital de Monitoreo y Control (SDMC). Sistema de paro de emergencia. Sistema de gas y fuego. Sistema contra incendio	Área de Tanques de almacen amiento

Tabla 10. CARACTERÍSTICAS DE EQUIPOS PRINCIPALES DEL PROYECTO.

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

La información completa de los tanques de almacenamiento está ubicada en el "Anexo I.2.2" (Hojas de datos de tanques de almacenamiento).

El "Anexo I.1.1" (Plano de arreglo general) muestra la localización de los tanques de almacenamiento en la TARC Cuyutlán.

Nota: La cantidad de bombas y las dimensiones de todos los elementos deben ser determinadas durante el desarrollo de la ingeniería del proyecto y su diseño debe cumplir con la normativa vigente.

I.2.3. Equipos de proceso y auxiliares

Equipos de proceso

Como parte de los equipos de proceso, la TARC Cuyutlán contara con bombas booster para mover los productos hacia áreas de despacho de auto-tanques y carro-tanques y así proporcionar presión adecuada de succión a los equipos de bombeo de llenaderas, también se contara con bombas principales y de relevo para llenaderas de carro-tanques y auto-tanques.

No. Bomba	TAG de bomba	Descripción	Flujo (GPM)	Producto a manejar
		Bombas boost	er	
1	BA-B01	Bomba booster del tipo centrifuga horizontal	4000	Diésel
2	BA-B02	Bomba booster del tipo centrifuga horizontal	4000	Diésel
3	BA-B03	Bomba booster del tipo centrifuga horizontal	4000	Diésel
4	BA-B04	Bomba booster del tipo centrifuga horizontal	4000	Gasolina regular

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

No. Bomba	TAG de bomba	Descripción	Flujo (GPM)	Producto a manejar
5	BA-B05	Bomba booster del tipo centrifuga horizontal	4000	Gasolina regular
6	BA-B06	Bomba booster del tipo centrifuga horizontal	4000	Gasolina regular
7	BA-B101	Bomba booster del tipo centrifuga horizontal	1000	Gas LP
	1	Bombas llenade	eras	
8	BA-01	Bomba centrifuga horizontal con motor eléctrico	500	Diésel
9	BA-02	Bomba centrifuga horizontal con motor eléctrico	500	Diésel
10	BA-03	Bomba centrifuga horizontal con motor eléctrico	1000	Diésel
11	BA-04	Bomba centrifuga horizontal con motor eléctrico	1000	Diésel
12	BA-05	Bomba centrifuga horizontal con motor eléctrico	1000	Diésel
13	BA-06	Bomba centrifuga horizontal con motor eléctrico	1000	Diésel
14	BA-07	Bomba centrifuga horizontal con motor eléctrico	500	Diésel
15	BA-08	Bomba centrifuga horizontal con motor eléctrico	500	Gasolina regular
16	BA-09	Bomba centrifuga horizontal con motor eléctrico	500	Gasolina regular
17	BA-10	Bomba centrifuga horizontal	1000	Gasolina regular

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

No. Bomba	TAG de bomba	Descripción	Flujo (GPM)	Producto a manejar
5011150		con motor eléctrico	(31111)	
18	BA-11	Bomba centrifuga horizontal con motor eléctrico	1000	Gasolina regular
19	BA-12	Bomba centrifuga horizontal con motor eléctrico	1000	Gasolina regular
20	BA-13	Bomba centrifuga horizontal con motor eléctrico	1000	Gasolina regular
21	BA-14	Bomba centrifuga horizontal con motor eléctrico	500	Gasolina regular
22	BA-15	Bomba centrifuga horizontal con motor eléctrico	500	Gasolina Premium
23	BA-16	Bomba centrifuga horizontal con motor eléctrico	1000	Gasolina Premium
24	BA-17	Bomba centrifuga horizontal con motor eléctrico	1000	Gasolina Premium
25	BA-18	Bomba centrifuga horizontal con motor eléctrico	500	Gasolina premium
26	BA-19	Bomba centrifuga horizontal con motor eléctrico	1000	Diésel
27	BA-20	Bomba centrifuga horizontal con motor eléctrico	1000	Diésel
28	BA-21	Bomba centrifuga horizontal con motor eléctrico	1000	Diésel
29	BA-22	Bomba centrifuga horizontal con motor eléctrico	1000	Diésel
30	BA-23	Bomba centrifuga horizontal con motor eléctrico	1000 Gasolina regular	
31	BA-24	Bomba centrifuga horizontal	1000	Gasolina regular

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

No. Bomba	TAG de bomba	Descripción	Flujo (GPM)	Producto a manejar
		con motor eléctrico		
32	BA-25	Bomba centrifuga horizontal con motor eléctrico	1000	Gasolina regular
33	BA-26	Bomba centrifuga horizontal con motor eléctrico		Gasolina regular
34	BA-27	Bomba centrifuga horizontal con motor eléctrico	1000	Gasolina premium
35	BA-28	Bomba centrifuga horizontal con motor eléctrico	1000	Gasolina premium
36	BA-29	Bomba centrifuga horizontal con motor eléctrico	1000	Gasolina premium

Tabla 11. Equipos principales de proceso.

Equipos auxiliares

Con el fin de contar con una operación confiable, la TARC Cuyutlán contara con servicios auxiliares, los cuales son mostrados en el listado siguiente:

- Agua de servicios.
- Agua Contra incendio.
- Aire de Planta e Instrumentos.
- Sistemas de drenajes.
- Sistemas de tratamiento de efluentes.
- Sistemas de inyección de agentes químicos.
- Sistemas contra incendio.
- Sistemas de gas y fuego.
- Sistema de alivio de presión.
- Suministro, distribución y respaldo de energía eléctrica.
- Sistemas de comunicación y voceo.
- Sistema circuito cerrado de televisión.

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

- Sistema de detección de intrusión en Barda perimetral.
- Sistemas de seguridad física.
- Sistema de aire acondicionado.
- Sistema de paro de emergencia.
- Sistema de telecomunicaciones.

Descripción	TAG	Año de fabricación	Capacidad en m³	Dimensiones	Código de Diseño	Materiales de construcción	Tiempo de vida Úfil	Sustancia manejada	Estado físico de la sustancia	Presión de prueba hidrostática kg/cm²	*Flujo de diseño y operació n Mín./ Normal/ Máx.	*Presión de diseño y operación en kg/cm² Mín./ Normal/ Máx.	*Temperatu ra de diseño y operación en °C Mín./ Normal/ Máx.	Sistemas de control, sistemas de seguridad y medios de contención	Ubicación
Compresor para aire de instrumentos y planta	S/Inf.	S/I nf.	4.5 m ³	S/Inf.	ASTM A36	Acero al carbó n	20 años	Aire atmosféri co	gas	N/A	N/A	Entrada: 8.78 Máxima de operación: 10.5	Operación: 36°C	S/Inf.	Taller de mantenim iento

Tabla 12. Características de equipos auxiliares del proyecto.

La información completa de equipos auxiliares está ubicada en el "Anexo I.2.3" (Hojas de datos de equipos auxiliares).

El "Anexo I.1.1" (Plano de arreglo general) muestra la localización de los equipos de proceso y auxiliares de la TARC Cuyutlán.

Nota: Los servicios auxiliares, así como los edificios y áreas, serán confirmados y ajustados durante la etapa de desarrollo de la Ingeniería Básica de acuerdo con las necesidades y condiciones particulares de este proyecto.

Elaboró:Revisó:Revisión:SeptiembreG.R.M.PorterD2023

I.2.4. Pruebas de verificación

Las pruebas de la TARC serán apegadas completamente y sin excepción a los requerimientos mínimos de la norma NOM-006-ASEA-2017, para las instalaciones de gasolina premium, gasolina regular y diésel, así como a la norma NOM-015-SECRE-2013, para las instalaciones de transvase de LPG.

Para tuberías y ductos, todos los equipos contarán con los registros de las pruebas necesarias para recepción, y en el caso de espesores de tuberías se considerará una base de datos de todos los espesores tomados antes de la puesta en operación.

Se contará con el historial de todas las pruebas hidrostáticas, radiografías y espesores de todas las tuberías que serán instaladas en la TARC Cuyutlan.

Tuberías y ductos

Los materiales de los sistemas de tubería deben ser conforme a las especificaciones de materiales de tubería (EMT) establecidas en las normas vigentes.

Los racks de tuberías deben considerarse con el número de pasarelas adecuadas para realizar las operaciones necesarias, sobre todo en la apertura de válvulas

Todos los equipos deberán contar con los registros de las pruebas necesarias para recepción, y en el caso de espesores de tuberías considerar una base de datos de todos los espesores tomados antes de la puesta en operación.

Todas las tuberías de producto deben considerar el desfogue de la presión de vapor por incremento de temperatura hacia el tanque (válvulas PSV).

Debe entregarse el historial de todas las pruebas hidrostáticas, radiografías y espesores de todas las tuberías nuevas que serán instaladas en la TAR.

La definición de los sistemas de tuberías totales requeridos para el proyecto se incluirá como parte del alcance de los estudios e ingeniería durante el desarrollo del proyecto.

Almacenamiento de productos

Protección para descargas eléctricas atmosféricas mediante un sistema de aterrizaje en sus 04 puntos cardinales.

Sistema de protección contra descargas atmosféricas (pararrayos)

Todas las instalaciones de la TARC deben tener un sistema de puesta a tierra, diseñado de conformidad con las normas NOM-001-SEDE-2012 y NOM-022-STPS-2008, que proporcione un medio seguro y eficaz para drenar las corrientes de falla tierra, estáticas y de retorno para la seguridad del personal y de las instalaciones.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Para el sistema de protección atmosférica no se deben utilizar sistemas de emisión de flujo o sistemas disipadores de energía.

Criterios Generales.

El sistema eléctrico se diseñará en conformidad con la NOM-001-SEDE-2012 y con la NOM-022-STPS-2008, contemplando la seguridad para el personal de planta, considerando un servicio confiable de equipos e instalaciones, fácil operación y mantenimiento, mínimas interrupciones de energía, adecuada protección mecánica y eléctrica para los equipos y personal, así como flexibilidad para adición de cargas futuras.

Puesta a Tierra.

Para protección mecánica de los cables de puesta a tierra que sale de la red subterránea (malla) hacia los equipos, dispositivos o estructuras, deben ser alojados en un tramo de tubo conduit, incluyendo su monitor; para protección de estos tramos contra la corrosión, el cable debe tener aislamiento de color verde.

Para protección mecánica de los cables de puesta a tierra que sale de la red subterránea (malla) hacia los equipos, dispositivos o estructuras, deben ser alojados en un tramo de tubo conduit, incluyendo su monitor; para protección de estos tramos contra la corrosión, el cable debe tener aislamiento de color verde.

EQUIPO MECÁNICO

Tanques de Almacenamiento:

Los tanques de almacenamiento (gasolina, diésel y agua contra incendio) deben suministrarse con protección anticorrosiva por el interior y exterior, de acuerdo con los requerimientos de la normatividad vigente.

Incluir en los tanques de almacenamiento los sistemas indicados como "Medidas Adicionales de Seguridad (M. A. S.): Se debe incluir como sistema de seguridad en los tanques, un sistema de monitoreo de fugas por el fondo (geomembrana), una red de espuma a partir del equipo paquete de presión balanceada y de agua contra incendio, cámaras de espuma tipo II como elemento principal, inyección sub superficial como protección complementaria, anillos de enfriamiento a base de agua contra incendio (incluyendo filtros de protección en las líneas de alimentación) y sistema de hidrantes contra incendio con tomas de 2 1/2" de diámetro para conexión a manguera, hidrantes monitores elevados, e instalación de detectores de mezclas explosivas, y sistema de tapones fusibles con arreglo de conexiones de corte (trim) en cada uno de los Tanques, considerando las condiciones climatológicas prevalecientes en el sitio de la obra.

Tipo de protección temporal con recubrimiento a los tramos de tubería posterior a la fabricación

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

La tubería nueva se debe suministrar de fábrica sin recubrimiento temporal adicional al previsto por el fabricante para protegerlos del intemperismo del sitio, ambiente húmedo y marino

Sistema de protección catódica (SPC) en tanques atmosféricos.

Diseñar el Sistema de Protección Catódica (SPC) por corriente impresa para la protección externa del fondo de los tanques atmosféricos para almacenar gasolina premium, gasolina regular y diésel.

Los tanques para agua contra incendio deben tener la protección catódica por corriente impresa interna y externa (fondo externo).

Sistema de control del SPC

Se requiere que cada sistema de protección catódica tenga varios puntos de monitoreo de potencial de acuerdo al área a proteger catódicamente, requerimiento que debe ser definida por la firma de ingeniería.

I.3. CONDICIONES DE OPERACIÓN

Las condiciones de operación son mostradas en el "Anexo I.3.1" (Diagramas de Flujo de Proceso) y "Anexo I.3.2" (Diagramas de Tuberías e instrumentación).

1.3.1. Especificación del cuarto de control

Estructura de un solo nivel, estructura principal a base de concreto reforzado, estructura secundaria a base de mampostería. Cubierta base de loza de concreto reforzado

Diseñar el edificio de un nivel, para el sistema de UPS considerar baterías libres de mantenimiento y espacio sin piso falso para la instalación del mismo, un espacio para los gabinetes y servidores del sistema SDMC, SGF y SPPE que deberá estar aislado y climatizado, baño de uso común (W. C. y lavabo); deberá incluir mobiliario para la colocación de equipo de cómputo.

Debe tener acceso visual hacia las áreas de llenaderas, descargaderas y del patio de tanques de almacenamiento.

Prever la instalación de piso falso y plafón falso, las puertas y sus marcos debe de ser de aluminio

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

1.3.2. Sistema de aislamiento

a. Sistema de paro por emergencia

Las Instalaciones de la Terminal deben ser diseñadas de forma tal que a falla o contingencias se realice un paro ordenado.

El Sistema de Paro de Emergencia de la Terminal de Almacenamiento y Reparto, debe ejecutar el paro ordenado en caso de que se presente una contingencia que ponga en riesgo la seguridad del personal, las instalaciones y/o el medio ambiente. Adicional a otras funciones de seguridad que se deriven del análisis de riesgo, se requiere que a través del sistema de paro de emergencia se efectúen las siguientes acciones de seguridad:

- Suspensión de las operaciones de llenaderas de auto-tanques y carro-tanques
- Cierre de las válvulas de salida a llenaderas de auto-tanques y carro-tanques de los tanques de almacenamiento.
- Suspensión de las operaciones de descarga de buque-tanques, carro -anques y autotanques; y paro del equipo de bombeo en su caso.

El sistema de paro por emergencia deberá ser autónomo del sistema de operación monitoreo y control de la terminal.

b. Sistema Contra Incendio

La terminal deberá contar con un sistema Automático de Control Contra Incendio SG&F el cual tiene como alcance proteger las siguientes áreas:

- Tanques de Almacenamiento.
- Llenaderas de carro-tanques.
- Llenaderas de auto-tanques.
- Fosa separadora de aceites
- Edificio Administrativo.
- Almacén de residuos peligrosos.
- Subestación Eléctrica.
- Laboratorio.
- Taller de mantenimiento y bodega
- Pasarela de acceso al muelle
- Plataforma de operación del muelle
- Apoyo al buque tanque en operación

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Considerar el Diseño de un sistema de captación pluvial que incluya una red de drenaje pluvial independiente al drenaje sanitario y drenaje aceitoso, que permita la captación y canalización de las precipitaciones pluviales hacia una laguna de captación, cuya capacidad se obtendrá del análisis de captación hidrológica del predio con el objeto de prever un suministro autónomo para los tanques del sistema contra incendio, así como la instalación de un sistema tipo paquete hidroneumático para el suministro de agua a las instalaciones.

La capacidad de flujo a manejar para la bomba de la laguna de captación debe ser congruente con la longitud y el diámetro de la tubería de la laguna a los tanques CI.

El sistema de almacenamiento, bombeo y distribución de agua contra incendio se instalará de conformidad a la normatividad vigente aplicable.

Se estima instalar dos tanques de agua contraincendios de una capacidad de 30 MB cada uno. No obstante, la capacidad de almacenamiento de agua contra incendio deberá ser diseñada en base a la normativa vigente aplicable y a la confiabilidad de la fuente de suministro. El almacenamiento de agua contra incendio, se debe determinar en función del requerimiento total de agua que demanda la protección de la instalación que represente el Riesgo Mayor de la instalación para su atención durante 2 (dos) horas ininterrumpidas, considerando su reposición en menos de ocho horas; de no poder darse esta reposición se debe considerar la capacidad del tanque de agua para la atención durante 4 horas ininterrumpidas

Para este fin se consideran tanques con techo tipo cúpula fija soportado, con placa de acero al carbón la cual debe cumplir con la normativa aplicable vigente, con recubrimiento anticorrosivo en el interior y exterior del tanque, registro de purga, boquilla de 24" de diámetro para entrada hombre en el techo, (se debe realizar el análisis correspondiente para determinar el gasto y capacidad de agua en el riesgo mayor de acuerdo a norma vigente) El tanque de agua contra incendio será abastecido a través de bombeo de pozo profundo, y deberá prever tomas al exterior de la terminal para el abastecimiento por camiones cisterna, considerando en el balance que el agua de reposición de la fuente interna, más la externa sean suficientes para reponer el agua de acuerdo a la normatividad aplicable vigente.

Confirmar que la capacidad del flujo a manejar por la bomba del pozo y el diámetro de la tubería del acueducto sea congruente con respecto al gasto considerado para las bombas de alimentación del tanque de agua contra incendio y agua de servicios.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Incluir acceso pavimentado para vehículos y andadores peatonales hasta la cisterna o tanque elevado de agua de servicio con el fin de facilitar el mantenimiento y la operación del equipo de bombeo ubicado en esta área.

Instalar cobertizo con estructura metálica para proteger tanto las bombas de contra incendio, como las del sistema hidroneumático para la red de agua de servicio.

La red de agua contra incendio de la Terminal deberá ser diseñada con forme a lo establecido en la normativa aplicable vigente y conforme a los resultados de los análisis Riesgo del proyecto.

Red de tubería contra incendio desde la casa de bombas contra incendio, debe considerar el suministro de agua CI a la zona de los patines de medición de transferencia de custodia en el Muelle, así como el suministro a los hidrantes de apoyo en el muelle.

El sistema de bombeo para la red de agua contra incendio deberá estar conformado por bombas principales y de relevo con la capacidad suficiente para atender el riesgo mayor identificado en el análisis Riesgo. La red de agua contra incendio se deberá mantener presurizada por medio de una bomba tipo "jockey". El diseño y selección del sistema de bombeo deberá ser conforme a la normativa aplicable vigente.

Deberá contar con una red de agua contra incendio cumpliendo con la normatividad vigente, con hidrantes, monitores y tomas de camión estratégicamente ubicados de acuerdo con el análisis de riesgo de la instalación, mangueras, y recirculación de agua, sistema de bombeo principal, con monitores ubicados de acuerdo con el plan de emergencia derivado del análisis de riesgo de la instalación.

El sistema de bombeo de agua contra incendio deberá contar con dos bombas (o más de ser necesarias) una principal y otra de relevo operadas con motor de combustión interna con capacidad suficiente para atender el escenario más crítico de acuerdo con el análisis de riesgo, (a verificar por IPC de acuerdo con el cálculo hidráulico), contando con su tablero de control, con sistema automático en el arranque. Este conjunto deberá cumplir con la normatividad vigente, Bomba "jockey" para mantener la presión en la red de contra incendio. Las conexiones ramal-cabezal de succión y descarga de los equipos de bombeo deberán ser con accesorios a 45°, con el fin de evitar taponamientos hidráulicos.

Deberá contar con una red de agua contra incendio cumpliendo con la normatividad vigente, con hidrantes, monitores y tomas de camión estratégicamente ubicados de acuerdo con el análisis de riesgo de la instalación, mangueras, y recirculación de agua,

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

sistema de bombeo principal, con monitores ubicados de acuerdo al plan de emergencia derivado del análisis de riesgo de la instalación.

El sistema de bombeo de agua contra incendio deberá contar con dos bombas (o más de ser necesarias) una principal y otra de relevo operadas con motor de combustión interna con capacidad suficiente para atender el escenario más crítico de acuerdo al análisis de riesgo, (a verificar por IPC de acuerdo al cálculo hidráulico), contando con su tablero de control, con sistema automático en el arranque. Este conjunto deberá cumplir con la normatividad vigente, Bomba "jockey" para mantener la presión en la red de contra incendio. Las conexiones ramal-cabezal de succión y descarga de los equipos de bombeo deberán ser con accesorios a 45°, con el fin de evitar taponamientos hidráulicos.

Deberá contar con un paquete de presión balanceada que cuente con su tanque de almacenamiento con material resistente al líquido espumante tipo AR-AFFF con capacidad suficiente para 4 horas de operación continua para el riesgo mayor (NOM -006-ASEA 2017), se deberá incluir inyección superficial e inyección subsuperficial a los tanques de almacenamiento de combustibles, se deberá incluir un recubrimiento externo e interno adecuado para evitar la corrosión en el mismo tomando en cuenta la normatividad aplicable vigente.

El Sistema digital de monitoreo y control contra incendio deberá ser controlado en forma independiente al SDMC de proceso a través un sistema automatizado de Gas y Fuego (SG&F).

Los tanques de almacenamiento deberán contar con anillos de enfriamiento sectorizados y contar con un sistema de proporción de espuma de presión balanceada para la extinción de fuego.

Las áreas de riesgo que se deben considerar en esta etapa para ser protegidas por el sistema son: Brazos de Descarga Marinos, Área de Patines de Medición, Tanques de Almacenamiento, área de carga y descarga de Carrotanques y autotanques, Cobertizo de bombas, Talleres Oficinas Administrativas, Cuarto de control de motores (CCM), Almacenes de residuos peligrosos, Cuarto de baterías. Las áreas indicadas deberán ser ratificadas o complementadas en el análisis de riesgo.

Dentro del alcance del desarrollo de la ingeniería se deberá diseñar una Red de circuitos de tuberías con su sistema de bombeo que permitan disponer desde el muelle con agua de mar para el combate a la eventualidad determinada como Riesgo Mayor. Para este fin se deberán analizar las siguientes alternativas:

a). - Bombeo directo de agua de mar a la red CI, debiendo preverse para este caso sectorizar la red CI en circuitos independientes específicos para este sistema, por

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

ejemplo, podría ser únicamente al circuito de los anillos de enfriamiento de los Tanques de almacenamiento si este fuera el Riesgo Mayor determinado en el Análisis de Riesgo.

b). - Bombeo Para reabastecer con agua de mar los niveles de los tanques contra incendio.

En cualquier caso, las tuberías, válvulas y accesorios del circuito de agua de mar deberán cumplir con la normatividad, especificaciones y/o recomendaciones para uso de agua de mar.

Considerar una Red de tubería para el sistema de proporción de espuma desde la casa de bombas contra incendio hasta la zona del Muelle, o en su defecto la instalación del suministro de espuma en la plataforma de operación del muelle, contemplando las facilidades para el suministro periódico del agente espumante en el punto de almacenamiento seleccionado.

El sistema contra incendio constará al menos de los siguientes elementos:

La operación del sistema contraincendios SG&F se hará en forma automática, independiente del sistema SDMC. Tendrá un tablero de control para abrir y cerrar las válvulas motorizadas arranque y paro de motores eléctricos tanto de las bombas contra incendio como las del equipo de presión balanceada.

Los sistemas SDMC y SG&F son una parte integral del proyecto de la terminal de almacenamiento y reparto y deberá incluirse la Ingeniería y construcción de un cuarto de control central y de alojamiento de gabinetes que albergaran los equipos de cómputo y los equipos del subsistema de control supervisorio, equipos de control considerados en el SDMC incluyendo los equipos de cómputo, control y respaldo de energía del SG&F. La ingeniería deberá incluir el cálculo para el dimensionamiento de aire acondicionado, sistemas de energía interrumpible (UPS) y sistemas de tierras lo cual debe estar conforme a la normativa vigente aplicable.

Requerimientos de extinción de fuego con equipo móvil:

Estos deben de seleccionarse de acuerdo con el Análisis de Riesgo de la Terminal y los posibles escenarios exteriores, así como la disponibilidad de auxilio externo; deben cumplir la normatividad vigente. Considerando en todo momento y de manera preferente la cobertura de los riesgos con equipo fijo y el escenario crítico de mínimo personal en la instalación. Esta Terminal deberá contar con un equipo móvil tipo servo comando si el estudio de riesgos lo justifica.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Requerimientos de sistema de detección de fuego, humo y mezclas explosivas

Se requiere la instalación del sistema de detección de fuego, humo y mezclas explosivas en las áreas de proceso que determine el análisis correspondiente. En los edificios administrativos; oficinas, vigilancia y cuartos de control de operaciones solamente se instalarán el sistema de detección de humo.

Deben considerarse Estaciones manuales de alarma por fuego en exteriores, instalando alarmas sectoriales (semáforos) con color verde, ámbar y rojo, a su vez identificándolos con alarmas de sonido sectoriales incluyendo generador de tonos

Detección de Humo

Se deberá incluir un Tablero de detección de humo para señales de los dispositivos de detección y alarma en interior de edificios estos estarán instalados en: Oficinas administrativas generales, Cuarto de Control, Caseta de vigilancia, Subestación eléctrica y CCM, Taller de mantenimiento Almacén, laboratorio de control de calidad.

La ubicación del tablero de los detectores y alarmas se determinará durante el desarrollo de la ingeniería de detalle.

Detectores de Mezclas Explosivas

Los detectores de mezclas explosivas deben ser ubicados en: Llenaderas de autotanques y carrotanques, áreas de bombas de proceso, área de tanques de almacenamiento de producto, almacén de residuos peligrosos, paquete de separación de aceites y en el área del Muelle, así mismo donde el estudio de riesgo lo indique.

Detectores de Flama

Los detectores de flama deben ser ubicados en: Llenaderas de autotanques y carrotanques, áreas de bombas de proceso, área de tanques de almacenamiento de producto, almacén de residuos peligrosos, paquete de separación de aceites y en el área del Muelle, así mismo donde el estudio de riesgo lo indique.

Requerimientos particulares del sistema de aspersión

Se requiere Sistema de aspersión agua-espuma en área de tanques, llenaderas y descargaderas de auto tanques, carrotanques y área de bombas.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Se requiere Sistema de protección a base de agente limpio en edificio administrativo y cuarto de control, Cuarto de equipos de control, CCM y cuarto de baterías.

Otros requerimientos

Letreros de seguridad y extintores portátiles en toda la terminal, gabinetes para Mangueras y equipo de protección contra incendio distribuido en toda la terminal según análisis de riesgo.

c. Sistema de contención

El diseño de los diques de contención de los tanques de almacenamiento será cumpliendo con el dimensionamiento normativo adecuado para la contención de la capacidad total de los tanques circunscritos. Se deben prever preparaciones de entradas y salidas temporales de equipo de construcción y maniobras al dique para dar mantenimiento a los tanques.

d. Planos de construcción

Código de Archivo	Código de Documento	Descripción
F-001 Arreglo de Diques Rev. C	F-001	Plano de Detalles de Diques
POR-TARC-SEG-SFG-002 REV-A	POR-TARC-SEG-SFG-002	Arquitectura General SFG TAR Cuyutlán
SCI-001 REV-A	SCI-001	Diagrama de Tuberías e Instrumentación – Sistema Contra Incendio
POR-TARC-TUB-ACI-PGT-001 REV- D	POR-TARC-TUB-ACI-PGT-001	Plano General de Tuberías de Agua Contra Incendio

Tabla 13. Listado de planos de construcción.

Actualmente el nivel de ingeniería no proporciona los elementos suficientes para la construcción de los sistemas de aislamiento, por lo que se incluyen en este apartado los planos que deben utilizarse como referencia para el desarrollo de una ingeniería de detalle apta para la construcción.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

I.4. ANÁLISIS Y EVALUACIÓN DE RIESGOS

I.4.1. Antecedentes de accidentes e incidentes

El concepto de riesgo y/o riesgo crítico, se identifica como la posibilidad de perder. Íntimamente relacionado con el riesgo crítico se encuentra el peligro, o condición que puede producir efectos adversos sobre la mejor utilización posible de los recursos humanos y de la propiedad. Se dice que hay peligro cuando se ha descubierto, se conoce o se sabe que existen una o varias condiciones peligrosas. Las consecuencias a que puede dar lugar cada uno de los riesgos serán siempre pérdidas:

Para las personas (lesiones, enfermedad, fatiga, insatisfacción, muerte, etc.).

- Para la propiedad (en bienes muebles e inmuebles)
- Para el proceso (tiempos perdidos, calidad deteriorada, etc.)
- Para el entorno (daños al ambiente, la ecología, la sociedad, etc.)

En la Ley General del Equilibrio Ecológico y la Protección al Ambiente se señala como criterio para considerar riesgosa a una actividad, el que comprenda acciones asociadas con el manejo de sustancias con propiedades corrosivas, reactivas, explosivas, tóxicas, inflamables, radioactivas y biológicas, en cantidades tales que en caso de producirse su liberación, sea por fuga o derrame, o bien un incendio o una explosión, puedan ocasionar afectación significativa al ambiente, a la población o a sus bienes.

En México, al igual que en el resto del mundo, el número de emergencias ambientales en donde se involucran materiales peligrosos es, desafortunadamente, cada vez mayor debido al incremento en la comercialización y uso de productos químicos.

Elaboró:Revisó:Revisión:SeptiembreG.R.M.PorterD2023

Los Accidentes e Incidentes ocurridos (nacionales e internacionales), en la operación en instalaciones similares a la TARC Cuyutlán son mostrados en la tabla siguiente:

Año	Ciudad y/o País	Instalación	Sustancia(s) involucrada(s)	Evento	Causa	Nivel de afectación (personal, población, medio ambiente, entre otros)	Acciones realizadas para su atención
1992	Guadalajara, México	-	Gasolina	-	Presencia de gasolina en la red de alcantarillado	190 personas fallecidas, 1,470 lesionados y cuantiosos daños materiales	
1996	San Juan Ixhuatepec II, Estado de México, México	Terminal Satélite Norte de Pemex, San Juan Ixhuatepec	Gasolinas y producto fuera de especificación	Fuga e incendio de aproximadamente 83,000 barriles de gasolinas y 2,250 barriles de producto fuera de especificación	Ruptura de una válvula del sistema de inyección de espuma subsuperficial en el tanque de almacenamiento TV-8 ocasionada por el empleo de un material fuera de especificación. Así como por diversas fallas relacionadas con la aplicación de procedimientos de control de calidad y seguridad	Se reportaron 4 personas fallecidas y 15 lesionadas. Alrededor de 5,000 personas tuvieron que ser evacuadas de las colonias aledañas, los daños materiales fueron estimados en 3,000 millones de pesos. La cantidad de emisiones contaminantes a la atmósfera fueron equivalentes al doble de lo que se emite en condiciones normales en el área metropolitana de la Ciudad de México	El control del evento se llevó a cabo mediante la aplicación de 200,000 L. de líquido formador de espuma (agua ligera) y 6.5 millones de litros de agua y con la participación de alrededor de 1,000 elementos de distintos cuerpos de bomberos. El evento fue totalmente controlado después de 35 horas de haberse iniciado
2005	Hemel Hempstead, Hertfordshire, Inglaterra	Terminal de Almacenamiento de combustibles "Buncefield Oil Storage Depot"	Combustibles, gasolinas	Explosión de nube de vapor	El display asociado al sistema de control de nivel dejo' de registrar la medida de nivel del tanque, aunque esté	40 personas heridas, daños al subsuelo y afectación a 20 tanques de almacenamiento	Activación del sistema de incendio

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Año	Ciudad y/o País	Instalación	Sustancia(s) involucrada(s)	Evento	Causa	Nivel de afectación (personal, población, medio ambiente, entre otros)	Acciones realizadas para su atención
					continuo' llenándose. Por lo tanto, las alarmas de alto nivel y muy alto nivel no se activaron, puesto que la lectura de nivel siempre se encontraba en valores inferiores.		
	2009	Puerto Rico	Planta de almacenamiento de combustible "Caribbean Petroleum Corporation"	Combustibles, gasolinas	Incendio y generación de explosiones	Falla en los sensores de nivel de llenado en uno de los tanques de almacenamiento	Evacuación de la población aledaña y contaminación de cuerpos de agua
	2009	Jaipur, India	Depósito de "Indian Oil Company"	Petróleo, Queroseno y Diésel	Explosiones y fuego	La falla inicial corresponde a una fuga de combustible ocurrida durante la transferencia de líquido entre un tanque de almacenamiento de la planta de Jaipur hacia otro tanque ubicado en una granja cercana, debido a la falla de válvula de control	500 mil personas evacuadas, 300 heridos, 12 fallecidos y las instalaciones completamente destruidas

Tabla 14. Antecedentes de accidentes e incidentes.

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

A continuación, son mostradas las emergencias reportadas a la PROFEPA:

- 1 - 1								Año								Toto	al	Acumulado
Estado	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	Eventos	%	(%)
Veracruz	143.00	83.00	73.00	94.00	118.00	85.00	63.00	65.00	44.00	46.00	45.00	57.00	90.00	76.00	123.00	1205.00	15.88	15.88
Tabasco	98.00	93.00	92.00	60.00	65.00	63.00	46.00	59.00	25.00	29.00	9.00	12.00	20.00	24.00	95.00	791.00	10.42	26.30
Tamaulipas	10.00	33.00	30.00	41.00	44.00	32.00	44.00	44.00	58.00	36.00	23.00	22.00	34.00	42.00	63.00	556.00	7.33	33.62
Guanajuato	31.00	34.00	6.00	18.00	6.00	9.00	11.00	16.00	24.00	26.00	25.00	14.00	33.00	53.00	237.00	539.00	7.10	40.77
Campeche	39.00	41.00	41.00	48.00	116.00	38.00	5.00	10.00	2.00	4.00	2.00	6.00	6.00	5.00	12.00	375.00	4.94	45.67
México	25.00	19.00	19.00	21.00	8.00	23.00	15.00	11.00	14.00	12.00	21.00	17.00	35.00	51.00	59.00	350.00	4.61	50.28
Oaxaca	18.00	19.00	17.00	19.00	18.00	23.00	29.00	22.00	24.00	19.00	16.00	21.00	30.00	21.00	29.00	325.00	4.28	54.56
Puebla	12.00	16.00	20.00	30.00	11.00	19.00	8.00	7.00	7.00	22.00	20.00	28.00	25.00	23.00	62.00	310.00	4.08	58.64
Nuevo León	18.00	21.00	25.00	4.00	7.00	5.00	16.00	9.00	14.00	20.00	25.00	24.00	30.00	28.00	35.00	281.00	3.70	62.35
Sonora	13.00	15.00	4.00	6.00	13.00	15.00	10.00	18.00	12.00	4.00	9.00	20.00	55.00	29.00	37.00	260.00	3.43	65.77
Chiapas	21.00	21.00	32.00	20.00	13.00	21.00	13.00	18.00	14.00	12.00	8.00	4.00	23.00	3.00	9.00	222.00	2.92	68.70
Jalisco	19.00	8.00	5.00	8.00	2.00	13.00	11.00	11.00	7.00	11.00	18.00	13.00	30.00	24.00	38.00	218.00	2.87	71.57
Hidalgo	22.00	20.00	13.00	8.00	8.00	11.00	8.00	7.00	9.00	9.00	8.00	16.00	17.00	22.00	32.00	210.00	2.77	74.33
Distrito Federal	14.00	3.00	4.00	7.00	16.00	19.00	11.00	9.00	6.00	12.00	9.00	13.00	15.00	34.00	34.00	206.00	2.71	77.05
Chihuahua	4.00	8.00	3.00	0.00	1.00	6.00	13.00	13.00	12.00	8.00	10.00	20.00	24.00	29.00	35.00	186.00	2.45	79.50
Coahuila	25.00	19.00	12.00	9.00	7.00	6.00	7.00	5.00	6.00	14.00	8.00	18.00	15.00	10.00	10.00	171.00	2.25	81.75
Baja California	7.00	10.00	10.00	2.00	2.00	4.00	5.00	2.00	2.00	6.00	7.00	20.00	23.00	23.00	17.00	149.00	1.96	83.72
Michoacán	11.00	14.00	13.00	11.00	7.00	3.00	7.00	6.00	6.00	6.00	12.00	9.00	15.00	10.00	13.00	143.00	1.88	85.60
San Luis Potosí	11.00	16.00	17.00	13.00	2.00	17.00	2.00	8.00	7.00	7.00	5.00	9.00	8.00	8.00	9.00	139.00	1.83	87.43

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

- 1								Año								Toto	Acumulado	
Estado	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	Eventos	%	(%)
Querétaro	9.00	3.00	5.00	6.00	6.00	1.00	6.00	9.00	7.00	11.00	10.00	11.00	13.00	10.00	27.00	134.00	1.77	89.20
Sinaloa	6.00	5.00	9.00	3.00	2.00	2.00	2.00	5.00	4.00	3.00	4.00	13.00	16.00	21.00	34.00	129.00	1.70	90.90
Zacatecas	2.00	4.00	3.00	3.00	1.00	8.00	4.00	10.00	5.00	9.00	15.00	11.00	15.00	13.00	22.00	125.00	1.65	92.54
Yucatán	3.00	5.00	2.00	7.00	7.00	2.00	4.00	5.00	6.00	7.00	4.00	8.00	13.00	8.00	8.00	89.00	1.17	93.72
Durango	5.00	30.00	4.00	3.00	5.00	9.00	1.00	9.00	4.00	0.00	3.00	4.00	8.00	5.00	8.00	78.00	1.03	94.74
Morelos	8.00	1.00	1.00	2.00	5.00	1.00	4.00	4.00	5.00	7.00	4.00	5.00	4.00	8.00	6.00	65.00	0.86	95.60
Tlaxcala	6.00	7.00	1.00	0.00	1.00	5.00	4.00	4.00	1.00	2.00	1.00	8.00	7.00	6.00	10.00	64.00	0.84	96.44
Guerrero	2.00	3.00	0.00	5.00	4.00	2.00	2.00	1.00	6.00	7.00	3.00	8.00	3.00	5.00	6.00	57.00	0.75	97.19
Baja California Sur	0.00	5.00	0.00	3.00	0.00	0.00	0.00	1.00	6.00	4.00	7.00	8.00	6.00	6.00	4.00	50.00	0.66	97.85
Aguascalientes	4.00	5.00	3.00	1.00	1.00	1.00	1.00	0.00	3.00	8.00	3.00	2.00	2.00	2.00	7.00	43.00	0.57	98.42
Colima	7.00	0.00	2.00	2.00	4.00	4.00	4.00	2.00	4.00	5.00	1.00	0.00	3.00	2.00	8.00	43.00	0.57	98.99
Nayarit	5.00	3.00	1.00	4.00	0.00	1.00	3.00	3.00	2.00	0.00	0.00	3.00	5.00	3.00	5.00	41.00	0.54	99.53
Quintana Roo	3.00	0.00	3.00	0.00	2.00	1.00	3.00	3.00	3.00	2.00	4.00	2.00	5.00	2.00	1.00	36.00	0.47	100.00

Tabla 15. Emergencias químicas reportadas a la PROFEPA (período 2000-2014).

Elaboró: **G.R.M.** Revisión: Septiembre **2023**

Tendencia

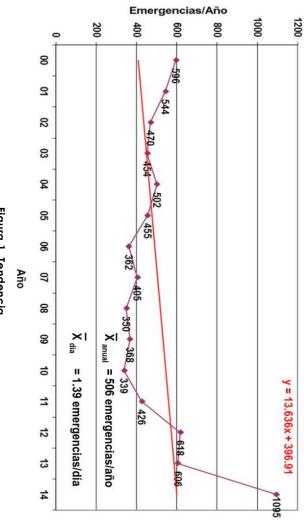


Figura 1. Tendencia.

Distribución estatal

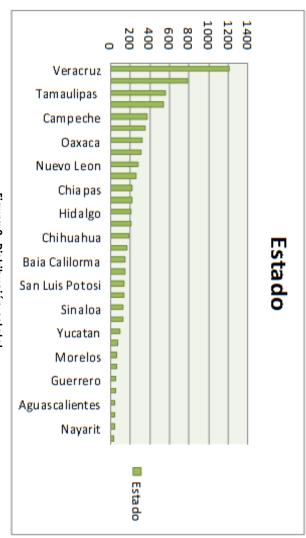


Figura 2. Distribución estatal.

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

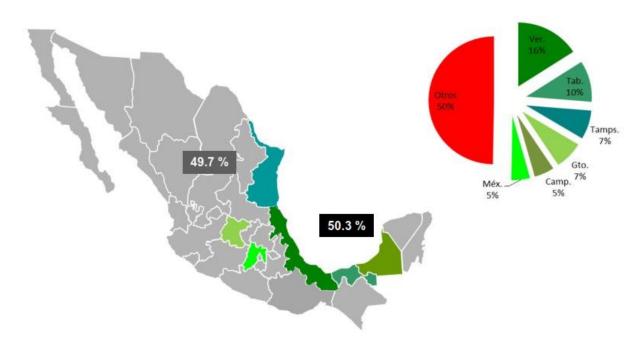


Figura 3. Distribución Regional (%).

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Localización de las emergencias

		Localización								
Año	Número de eventos	Terre	stre	Marít	ima					
	CVCIIIO3	No.	%	No.	%					
2000	596	552	92.6	44	7.4					
2001	544	503	92.5	41	7.5					
2002	470	435	92.8	35	7.4					
2003	454	411	90.5	43	9.5					
2004	502	390	77.7	112	22.3					
2005	466	414	91	41	9					
2006	362	349	98.4	13	3.6					
2007	405	383	94.6	22	5.4					
2008	350	344	98.3	6	1.7					
2009	368	354	96.2	14	3.8					
2010	339	335	98.8	4	1.2					
2011	426	418	96.4	7	1.6					
2012	618	605	97.9	13	2.1					
2013	606	597	98.5	9	1.5					
2014	1096	1080	98.6	15	1.4					
Total	7590	7171	94.5	418	5.5					

Tabla 16. Localización de las emergencias.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

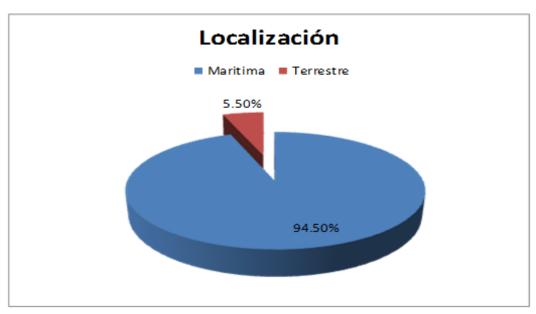


Figura 4. Localización de las emergencias.

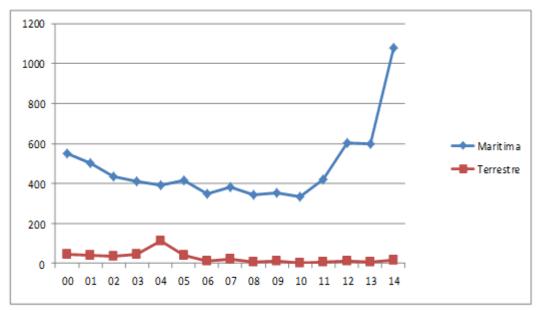


Figura 5. Crecimiento y localización de las emergencias.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Tipo de emergencias reportadas a la PROFEPA (Período 2000-2014)

	Número					Emerger	ncia				
Año	de	Fu	ıga	Derro	ame	Explo	osión	Ince	ndio	Otro	
	eventos	No.	%	No.	%	No.	%	No.	%	No.	%
2000	596	46	7.7	483	81	36	4.6	35	5.9	6	1
2001	544	50	9.2	455	83.6	14	2.5	21	3.9	4	0.7
2002	470	22	4.7	403	85.7	15	2.6	27	5.7	3	0.6
2003	454	22	4.8	385	84.8	18	3.2	21	4.6	8	1.8
2004	502	29	5.8	446	88.6	10	1.8	18	3.6	0	0
2005	466	51	11.2	338	74.3	28	4.9	38	8.4	0	0
2006	362	51	14.1	251	69.3	31	5.5	29	8	0	0
2007	405	54	13.3	292	72.1	25	4.4	34	8.4	0	0
2008	350	54	15.4	240	71.1	16	2.8	30	8.6	1	0.3
2009	368	67	18.2	245	66.6	22	3.9	34	9.2	0	0
2010	339	44	13.00	228	67.3	33	5.8	34	10	0	0
2011	426	65	15.3	273	64.1	60	8.8	36	8.5	2	0.5
2012	618	87	14.1	408	66	68	11.6	51	8.3	6	1
2013	606	102	16.8	384	63.4	70	12.3	44	7.3	9	1
2014	1096	139	12.7	818	74.8	61	9	83	7.6	3	0.3
Total	7590	883	11.6	5858	74.5	475	6.3	535	7.00	39	0.5

Tabla 17. Tipo de emergencia.

Elaboró:Revisó:Revisión:SeptiembreG.R.M.PorterD2023

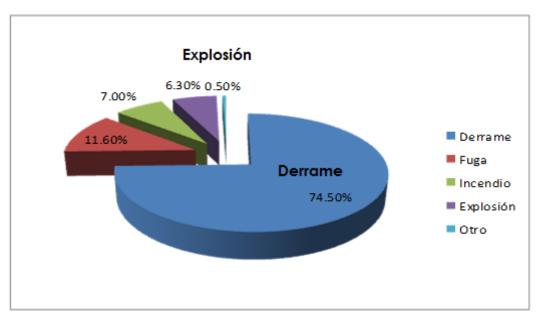


Figura 6. Tipo de emergencia.

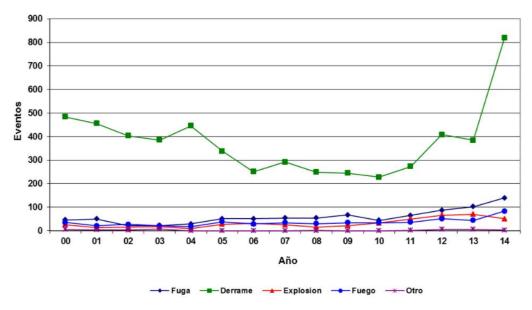


Figura 7. Emergencias por año.

Elaboró:Revisó:Revisión:SeptiembreG.R.M.PorterD2023

Ubicación de Emergencias

		Ubicación									
Año	Número de eventos	Pla	ınta	Trans	porte	Otro					
	C VCIIIO3	No.	%	No.	%	No.	%				
2000	596	142	23.8	422	70.80	32	5.40				
2001	544	112	20.6	406	74.60	26	4.80				
2002	470	112	23.8	339	72.10	19	4.00				
2003	454	126	27.8	304	67.00	24	5.30				
2004	502	200	39.8	280	55.80	22	4.40				
2005	466	139	30.5	279	61.30	37	8.10				
2006	362	98	27.1	219	60.50	45	12.40				
2007	405	98	24.2	268	66.20	39	9.60				
2008	350	83	23.7	217	62.00	50	14.30				
2009	368	138	37.5	219	59.50	11	3.00				
2010	339	84	24.8	229	67.60	26	7.70				
2011	426	109	25.6	271	63.60	46	10.80				
2012	618	127	20.6	402	65.00	89	14.40				
2013	606	118	19.5	394	65.00	94	15.50				
2014	1096	155	14.2	837	76.40	103	9.40				
Total	7590	1841	24.3	5086	67.00	663	8.70				

Tabla 18. Ubicación de las emergencias.

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

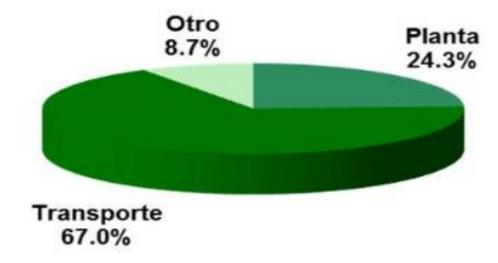


Figura 8. Distribución de ubicación de emergencias.

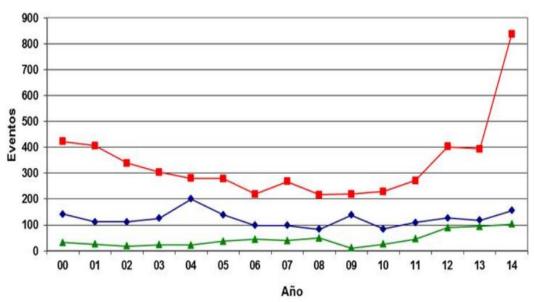


Figura 9. Eventos por año.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Emergencias en medios de transporte

	Número					Trans	porte					
Año	de	Total	FFC	С	Carre	tero	Marí	ima	Duc	to	Ot	tro
	eventos	Total	No.	%	No.	%	No.	%	No.	%	No.	%
2000	596	422.00	8.00	1.90	134.00	31.80	3.00	0.70	277.00	65.60	0.00	0.00
2001	544	406.00	10.00	2.50	149.00	36.70	4.00	1.00	243.00	59.90	0.00	0.00
2002	470	339.00	9.00	2.70	143.00	42.20	6.00	1.80	181.00	53.40	0.00	0.00
2003	454	304.00	7.00	2.30	125.00	41.10	2.00	0.70	170.00	55.90	0.00	0.00
2004	502	280.00	4.00	1.40	99.00	35.40	2.00	0.70	175.00	62.50	0.00	0.00
2005	466	279.00	11.00	3.90	121.00	43.40	1.00	0.40	143.00	51.30	3.00	1.10
2006	362	219.00	2.00	0.90	102.00	46.60	4.00	1.80	111.00	50.70	0.00	0.00
2007	405	268.00	8.00	3.00	118.00	44.00	2.00	0.70	140.00	52.20	0.00	0.00
2008	350	217.00	7.00	3.20	133.00	61.30	2.00	0.90	74.00	34.10	1.00	0.50
2009	368	219.00	6.00	2.70	138.00	63.00	3.00	1.40	72.00	32.90	0.00	0.00
2010	339	229.00	5.00	2.20	143.00	62.40	2.00	0.90	78.00	34.10	1.00	0.40
2011	426	271.00	7.00	2.60	161.00	59.40	4.00	1.50	99.00	36.50	0.00	0.00
2012	618	402.00	9.00	2.20	177.00	44.00	4.00	1.00	210.00	52.20	2.00	0.50
2013	606	394.00	4.00	1.00	148.00	37.60	6.00	1.50	236.00	59.90	0.00	0.00
2014	1096	837.00	7.00	0.80	136.00	16.20	1.00	0.10	692.00	82.70	1.00	0.10
Total	7590	5086.00	104.00	2.00	2027.00	39.90	46.00	0.90	2901.00	57.00	8.00	0.20

Tabla 19. Emergencias en medios de transporte.

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

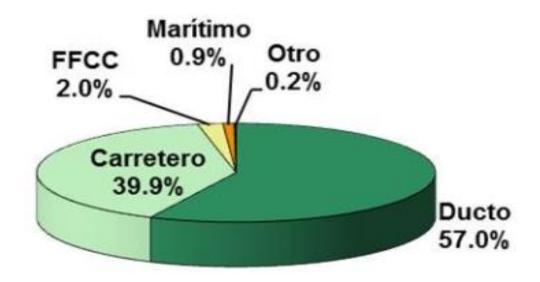


Figura 10. Distribución de emergencias en medios de transporte.

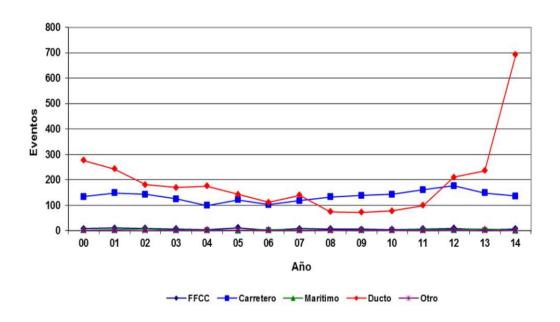


Figura 11. Gráfica de eventos por año en medios de transporte.

Nota: Las estadísticas presentadas anteriormente son las ultimas proporcionadas por La Procuraduría Federal de Protección al Ambiente (PROFEPA)

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

I.4.2. Metodología de identificación y jerarquización

Para la identificación de riesgos de proceso en la etapa de diseño de la TARC Cuyutlán se empleó la metodología "Análisis de Peligros y Operabilidad (HazOp)" y para la identificación de los riesgos por factores externos fue empleada la metodología ¿Qué pasa Sí?.

La descripción de las metodologías empleadas en el presente estudio se muestra en el "Anexo I.4.2.6" (Descripción de las metodologías).

Para la jerarquización de riesgos, los valores de frecuencia (probabilidad) y consecuencia (severidad) de los escenarios de riesgo identificados se emplearon matrices de 6x6, la ponderación de las frecuencias y consecuencias son mostradas en el "Anexo I.4.2.7" (Matrices de riesgo).

Los análisis de consecuencias en tierra (simulación de escenarios de riesgo por fugas y derrames), son realizados utilizando la herramienta informática PHAST (última versión).

Para las actividades en zonas marinas la determinación de la simulación de derrame se realizará a través de software de modelación en agua, el cual permite la evaluación de liberación de hidrocarburo en temporada de secas, lluvias y nortes, considerando el tiempo mínimo, máximo y medio para atender el evento.

Las hojas de trabajo y la evidencia de las reuniones son mostradas en los documentos siguientes:

[&]quot;Anexo I.4.2.2" (Listas de asistencia y minutas).

[&]quot;Anexo I.4.2.3" (Planos nodalizados).

[&]quot;Anexo I.4.2.4" (HazOp).

[&]quot;Anexo I.4.2.5" (Que Pasa Si?).

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Premisas, consideraciones y criterios aplicados

Premisas

En la elaboración del Estudio de Riesgo para la Terminal de Almacenamiento y Reparto de Combustibles Cuyutlán, se realizó la integración y formalización del GMAER.TARCUY.2023-1 mediante acta constitutiva. Ver "Anexo I.4.2.1" (Acta constitutiva de GMAER).

Consideraciones

Todos los escenarios de riesgo, ubicados en las zonas de riesgo ALARP con impacto al medio ambiente, no serán simulados ya que estos son evaluados y jerarquizados en función del tiempo de respuesta para la atención de fugas y derrames. Sin embargo, pueden quedar contemplados en aquellos con impacto al personal y a la población, debido a fugas y derrames de hidrocarburos

Todos los escenarios de riesgo, derivados de la jerarquización, que estén ubicados en las zonas de riesgo ALARP (riesgo indeseable y aceptable con controles), con impacto a la producción y a las instalaciones, no serán simulados ya que éstos serán evaluados y jerarquizados en función del costo estimado, el primero por no producir o transportar los hidrocarburos y el segundo por la reparación de las instalaciones. Sin embargo, pueden quedar contemplados en aquellos con impacto al personal y a la población, debido a fugas y derrames de hidrocarburos.

Todos los escenarios de riesgos ubicados en zona tolerable y zona ALARP (Zona de riesgo aceptable con controles), que generen como consecuencia incendio y/o explosión serán simulados.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Criterios utilizados para la codificación de nodos, escenarios de riesgo y recomendaciones

Nodos. Identificados con el siguiente ejemplo: 01.01

Donde:

01- Número de nodo

01 - Consecutivo del escenario asociado al nodo

Escenarios de Riesgo. Identificado con el siguiente ejemplo: TARCUY.GRE.01.10.

Dónde:

TARCUY: Terminal de Almacenamiento y Reparto de Combustibles Cuyutlán.

DIE: Diésel

GRE: Gasolina Regular

G: Gasolinas GLP: Gas LP

01.07: Consecutivo del escenario de riesgo

Recomendaciones. Se identifica con el siguiente ejemplo: ER.TARCUY.2023.01

Dónde:

ER: Estudio de Riesgo, modalidad análisis de riesgos

TARCUY: Terminal de Almacenamiento y Reparto de Combustibles Cuyutlán

2023: Año de identificación de la recomendación

01: Numero consecutivo de recomendación

Descripción de escenarios

Para la descripción de los escenarios de riesgo se considera la forma y condiciones en que ocurre la fuga o derrame de la sustancia peligrosa, diámetro equivalente de fuga (DEF), ubicación del evento. Donde aplique, se incluyen escenarios que se contemplan en la descripción como equivalentes.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

II. DESCRIPCIÓN DE LAS ZONAS DE PROTECCIÓN EN TORNO A LAS INSTALACIONES

II.1. RADIOS POTENCIALES DE AFECTACIÓN

Criterios utilizados para la simulación de escenarios

Condiciones meteorológicas. La velocidad de viento utilizada es de 1.5 m/s con estabilidad de Pasquill F (para la noche) y 4.8 m/s con estabilidad de Pasquill A-B (para el día).

Todos los escenarios de riesgo derivados de la jerarquización que se ubiquen en las zonas de riesgo ALARP (riesgo indeseable y aceptable con controles), y No Tolerable con impacto al personal y a la población, se simularán con los diámetros equivalentes de fuga (DEF) siguientes:

- a) El Escenario Peor Caso (EPC), para cada Sustancia Peligrosa manejada (para recipientes, considerar el que involucre a la mayor cantidad de sustancia en un solo recipiente;
- b) El Caso Más Probable (CMP), para cada Sustancia Peligrosa manejada, considerando una fuga del 20 % del diámetro equivalente de la tubería, y
- c) Los Escenarios Casos Alternos (EPC), considerar simulaciones para un orificio de fuga del 20 % y del 100 % del diámetro equivalente de la tubería, y ruptura total en caso de recipientes.

Los inventarios para la simulación de escenarios son calculados de acuerdo con la siguiente fórmula:

$$IF = (fm x t) + \left(\left(\left(\frac{\pi d^2}{4} \right) x D \right) x \rho \right)$$

IF – Inventario de fuga (kg)

fm – Flujo másico (kg/s)

- t Tiempo que transcurre desde que se presenta la fuga, hasta que esta es aislada cerrando las válvulas de seccionamiento (s)
- d Diámetro de la línea, tubería o ducto (m)
- D Distancia que existe entre válvulas de seccionamiento o bloqueo que aíslan la fuga (m)
- ρ Densidad de la sustancia (kg/m³)

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Para obtener el material fugado, se consideró un tiempo de 3 minutos, tiempo aproximado de cierre de válvulas.

El detalle de cálculo de inventarios fugados para el presente proyecto está en el "Anexo II.1.1" (Memoria de cálculo de inventarios fugados).

Los límites de exposición por radiación térmica y sobrepresión de referencia son los estipulados en el documento: "Guía para la elaboración del análisis de riesgo para el sector hidrocarburos" de la ASEA (Agencia de Seguridad, Energía y Ambiente), y son mostrados en la siguiente tabla:

	Zona de Alto Riesgo por daño a equipos	Zona de Alto Riesgo	Zona de Amortiguamiento
Toxicidad (Concentración)	-	IDLH (ppm)	TLV (8 h, TWA) o TLV (15 min, STEL) (ppm)
Inflamabilidad (Radiación térmica)	Rango de 12.5 kW/m² a 37.5 kW/m² kW/m	5.0 kW/m²	1.4 kW/m²
Explosividad (Sobrepresión)	Rango de 3 lb/in² a 10 lb/in²	1.0 lb/in² (0.070 kg/cm²)	0.5 lb/in² (0.035 kg/cm²)

Tabla 20. Parámetros para la determinación de las zonas de alto riesgo y amortiguamiento para el análisis de riesgo.

Las simulaciones realizadas para cada una de las sustancias peligrosas manejadas en la TARC Cuyutlán son mostradas en el "Anexo II.1.2" (Hojas de trabajo del simulador PHAST).

En el "Anexo II.1.4" (Radios de afectación), son mostrados los planos con la representación de las zonas de alto riesgo y amortiguamiento, donde son identificados los puntos de interés que se encuentran inmersos dentro de dichas zonas (componentes ambientales, asentamientos humanos, cuerpos de agua, etc.).

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Para el caso de posibles derrames en Zonas Marinas Mexicanas, fueron elaboradas simulaciones de dispersión en agua, tomando en cuenta los periodos de secas y lluvias, las simulaciones se muestran en el "Anexo II.1.3 (Modelación trayectoria de derrame en zonas marinas)".

Para lo anterior se elaboraron **Estudios Hidrológicos**, **hidráulicos y de dispersión de contaminantes en agua (HID-TCUY-001)** con el objetivo de definir, mediante diversos estudios y modelos matemáticos, los parámetros de lluvia, escurrimiento, corrientes en la laguna, vientos y demás elementos que afecten la dispersión de contaminantes en agua. Adicionalmente se evaluará la efectividad de las medidas de contención que se puedan adoptar para mitigar los daños causados.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

II.2. INTERACCIONES DE RIESGO

Los escenarios que dentro de la zona de alto riesgo por daño a equipos (Radiación térmica: rango de 12.5 kW/m² a 37.5 kW/m² y sobrepresión: rango de 3 lb/in² a 10 lb/in²) y zona de alto riesgo (radiación térmica: 5.0 kW/m² y sobrepresión: 1.0 lb/in²), ubiquen equipos que manejen hidrocarburos u otras sustancias peligrosas son mostrados en el "Anexo II.2.1" (Interacciones de riesgo).

II.3. EFECTOS SOBRE EL SISTEMA AMBIENTAL

Con el apoyo del capítulo IV de la Manifestación de Impacto Ambiental, son identificados y descritos los componentes ambientales y asentamientos humanos que pudiesen ser afectados por los eventos de riesgo identificados, donde son valorados los efectos sobre la integridad funcional de los ecosistemas (biodiversidad, fragilidad, hábitats, etc.).

Lo anterior es mostrado en el "Anexo II.3.1" (Efectos sobre el sistema ambiental) y en el "Anexo II.3.2 (Análisis de vulnerabilidad)"

Elaboró:Revisó:Revisión:SeptiembreG.R.M.PorterD2023

III. SEÑALAMIENTO DE LAS MEDIDAS DE SEGURIDAD Y PREVENTIVAS EN MATERIA AMBIENTAL

III.1. RECOMENDACIONES TÉCNICO-OPERATIVAS

Derivado de la aplicación de las metodologías para análisis y evaluación de riesgos y con el fin de reducir el nivel de riesgo de la TARC Cuyutlán, son emitidas las recomendaciones siguientes:

		ldentificació n del nodo.	Elemento del SASISOPA	Esce	enario de Riesgo		g de
No.	Recomendación	sistema, o km	asociado a la recomendació n	No	Descripción	Responsable	Nivel de Riesgo
ER.TARCUY.2022.01	Realizar la filosofía de control y matriz causa - efecto del sistema de paro por emergencia que especifique tanto la operación del botón de emergencia como la operación automática del sistema	Nodo 1		01.02	Menor presión por desprendimient o en acoplamiento del BCM el cual puede provocar derrame con incendio	EPC	В
ER.TARCUY.2022.02	Confirmar la cobertura de los hidrantes- monitores	Nodo 1			Menor presión por desprendimient o en acoplamiento del BCM el cual puede provocar derrame con incendio	EPC	В
ER.TARCUY.2022.03	Indicar en la filosofía de control, alarmas en caso de que la configuración de la posición de las válvulas registradas no coincida con la operación que se está realizando	Nodo 1		01.16	Menor flujo por cierre súbito o no programado de MOV's el cual provoca un retraso en las operaciones	EPC	С

		ldentificació n del nodo,	Elemento del SASISOPA	Esce	enario de Riesgo		de go
No.	Recomendación	sistema, o km	asociado a la recomendació n	No	Descripción	Responsable	Nivel de Riesgo
ER.TARCUY.2022.04	Incluir en la ingeniería de detalle el diseño para los sistemas de protección contra corrosión en área de muelle	Nodo 1			Menor presión debido a una fuga en línea por corrosión, la cual puede causar incendio	EPC	С
ER.TARCUY.2022.05	Colocar gabinetes de control de incendios sobre pasarela de acceso a muelle	Nodo 1		01.04	Menor presión debido a una fuga en línea por corrosión, la cual puede causar incendio	EPC	С
ER.TARCUY.2022.06	Colocar válvulas de corte en la tubería de ambos extremos de la pasarela de acceso a muelle	Nodo 1			Menor presión debido a una fuga en línea por corrosión, la cual puede causar incendio	EPC	С
ER.TARCUY.2022.07	Elaborar programas de mantenimiento	Nodo 1		01.11	Mayor presión debido a expansión térmica, la cual puede causar un derrame con Incendio	Operador	С
ER.TARCUY.2022.08	Elaborar lineamientos de amarre y desamarre de Buque Tanque	Nodo 1		01.24	Mayor temperatura provocada por incendio en buque tanque, la cual puede provocar fuga en uniones bridadas	Operador	С
ER.TARCUY.2022.09	Integrar válvula presión-vacío a programa de mantenimiento	Nodo 2		02.03	Menor presión debido a colapso de tanque de almacenamient o de gasolinas, el cual puede provocar un derrame con incendio	Operador	В

		ldentificació n del nodo,	Elemento del SASISOPA	Esce	enario de Riesgo		de go
No.	Recomendación	sistema, o km	asociado a la recomendació n	No	Descripción	Responsable	Nivel de Riesgo
ER.TARCUY.2022.10	Colocar transmisor indicador de presión en la línea de salida del tanque	Nodo 2		02.03	Menor presión debido a colapso de tanque de almacenamient o de gasolinas, el cual puede provocar un derrame con incendio	Operador	В
ER.TARCUY.2022.11	Incluir en la filosofía del sistema de paro por emergencia una función de seguridad o acción por falla de la válvula presión-vacío.	Nodo 2		02.03	Menor presión debido a colapso de tanque de almacenamient o de gasolinas, el cual puede provocar un derrame con incendio	Operador	В
ER.TARCUY.2022.12	Incluir en la filosofía del Sistema de Paro de Emergencia una función de seguridad o acción ante la falla de válvula reguladora de flujo (FCV).	Nodo 2		02.07	Mayor flujo por falla de válvula reguladora de flujo (FCV), lo cual puede provocar un derrame por sobrellenado	EPC	С
ER.TARCUY.2022.13	Implementar sistema de protección de sobrellenado conforme al estándar API 2350	Nodo 2			Mayor flujo por falla de válvula reguladora de flujo (FCV), lo cual puede provocar un derrame por sobrellenado	EPC	С
ER.TARCUY.2022.14	Incluir en la filosofía del sistema de paro por emergencia una función de seguridad o acción para el error de medición de nivel durante el llenado de tanques.	Nodo 2		02.07	Mayor nivel por Error de medición de nivel durante llenado de tanques (transmisor indicador de nivel), el cual puede provocar un derrame con incendio	EPC	C

Na		ldentificació n del nodo,	Elemento del SASISOPA	Esce	enario de Riesgo		de go
No.	Recomendación	sistema, o km	asociado a la recomendació n	No	Descripción	Operador Operador Operador	Nivel de Riesgo
ER.TARCUY.2022.15	Incluir en manual de operaciones el trasvase entre tanques.	Nodo 2	<u></u>	02.15	Mayor temperatura debido a incendio aledaño a un tanque de almacenamient o, el cual puede provocar generación de vapores con incendio	Operador	В
ER.TARCUY.2022.16	Integrar en manual de mantenimiento el programa de revisión de espesores de tubería.	Nodo 3		03.12	Menor flujo debido a fuga en línea por corrosión, la cual podría generar incendio	Operador	С
ER.TARCUY.2022.17	Integrar revisión y limpieza de filtros en manual de mantenimiento.	Nodo 3		03.03	Menor presión por obstrucción de filtro tipo canasta, el cual puede ocasionar cavitación de bomba booster	Operador	D
ER.TARCUY.2022.18	Elaborar análisis para la instalación de válvulas de alivio térmico en succión y descarga de bombas Booster.	Nodo 3			Mayor presión por expansión térmica, la cual puede generar derrame con incendio	EPC	С
ER.TARCUY.2022.19	Incluir en PRE el uso de EPP adecuado para atención de fugas y combate de incendios.	Nodo 3		03.07	Mayor presión por expansión térmica, la cual puede generar derrame con incendio	EPC	С
ER.TARCUY.2022.20	Elaborar análisis para ubicar gabinetes con kit de contención de derrames en planta.	Nodo 3			Mayor presión por expansión térmica, la cual puede generar derrame con incendio	EPC	С

		Identificació n del nodo,	Elemento del SASISOPA	Esce	enario de Riesgo		de go
No.	Recomendación	sistema, o km	asociado a la recomendació n	No	Descripción	Responsable	Nivel de Riesgo
ER.TARCUY.2022.21	Elaborar Protocolo de Respuesta a Emergencias.	Nodo 3		03.17	Mayor temperatura por incendio aledaño, lo cual puede provocar derrame por expansión térmica	Consultor	С
ER.TARCUY.2022.22	Incluir en el PRE acciones a realizar para fugas por expansión térmica derivadas de un incendio en la TARC Cuyutlán.	Nodo 3		03.18	Mayor temperatura por incendio aledaño, lo cual puede provocar derrame por expansión térmica con incendio	Consultor	С
ER.TARCUY.2022.23	Programar una alarma por alta presión diferencial en la UCL.	Nodo 4		04.16	Mayor presión por obstrucción de filtro FL, el cual puede ocasionar derrame con incendio	EPC	С
ER.TARCUY.2022.24	Elaborar análisis para la instalación de válvulas de relevo térmico en la línea de descarga de bombas principales y en islas de llenado.	Nodo 4		04.10	Mayor presión por cierre súbito o no programado de válvula FCV, el cual puede ocasionar derrame con incendio	EPC	C
ER.TARCUY.2022.25	Incluir en manual de operación la revisión de equipos terrestres.	Nodo 4		04.13	Mayor presión por Sobrepresionam iento del auto- tanque, el cual puede ocasionar derrame con incendio	Operador	C
ER.TARCUY.2022.26	Elaborar análisis para la implementación de acciones del Sistema de Paro por Emergencia donde se	Nodo 12		12.03	Menor presión debido a desacoplamient o de BCM, falla o mala operación, lo cual puede	Consultor/EP C	С

		Identificació n del nodo,	Elemento del SASISOPA	Esce	enario de Riesgo		de go
No.	Recomendación	sistema, o km	asociado a la recomendació n	No	Descripción	EPC EPC	Nivel de Riesgo
	requiera.				provocar una formación de nube explosiva		
ER.TARCUY.2022.27	Elaborar análisis para colocación de una bomba de relevo en sistema de LPG	Nodo 12		12.05	Menor presión debido a cierre súbito o no programado de MOV's, lo cual puede provocar cavitación de la bomba	EPC	С
ER.TARCUY.2022.28	Colocar tanque de recuperación de desfogues.	Nodo 12		12.19	Mayor presión por expansión térmica, la cual puede provocar fuga con formación de atmosfera explosiva	EPC	С
ER.TARCUY.2022.29	Elaborar análisis de tiempo de cierre de MOV's.	Nodo 12		12.12	Mayor presión debido a cierre súbito o no programado de MOV's, lo cual puede provocar fuga con formación de atmosfera explosiva	EPC	С
ER.TARCUY.2022.30	Confirmar la cobertura del sistema contra incendio.	Nodo 12		12.12	Mayor presión debido a cierre súbito o no programado de MOV's, lo cual puede provocar fuga con formación de atmosfera explosiva	EPC	С
ER.TARCUY.2022.31	Incluir en DTI de muelle la línea de retorno de vapores.	Nodo 13		13.09	Mayor presión por expansión térmica, la cual puede provocar fuga con formación de atmosfera explosiva	EPC	c

	n del nodo SASISOFA	enario de Riesgo		g de			
No.	Recomendación	sistema, o km	asociado a la recomendació n	No	Descripción	Responsable	Nivel de Riesgo
ER.TARCUY.2022.32	Realizar la filosofía de control y matriz causa - efecto del sistema de paro por emergencia que contemple el cierre súbito o no programado de la Válvula FV.	Nodo 13		13.15	Mayor presión debido a sobrepresionami ento del auto- taque, la cual puede provocar fuga con incendio	EPC	С
ER.TARCUY.2022.33	Incluir retorno de vapores de GLP de equipos terrestres hacía el muelle.	Nodo 13		13.15	Mayor presión debido a sobrepresionami ento del auto- taque, la cual puede provocar fuga con incendio	EPC	С
ER.TARCUY.2022.34	Colocar un indicador de posición en válvula manual.	Nodo 13		12.14	Menor flujo debido a cierre de válvula manual a la entrada de patín de carga, la cual puede provocar retraso en operaciones de llenado	EPC	C
ER.TARCUY.2022.35	Colocar candado a válvula manual en posición de operación.	Nodo 13		13.16	Menor flujo debido a cierre de válvula manual a la entrada de patín de carga, la cual puede provocar retraso en operaciones de llenado	EPC	C
ER.TARCUY.2022.36	Hacer revisión de responsabilidade s en manual de operación.	Nodo 13		13.18	Mayor flujo debido a desacoplamient o de manguera de carga en equipo terrestre, lo cual puede provocar fuga con incendio	Operador	С

No.	Recomendación	Identificació n del nodo, sistema, o km	Elemento del SASISOPA asociado a la recomendació n	Escenario de Riesgo			de go
				No	Descripción	Responsable	Nivel de Riesgo
ER.TARCUY.2022.37	Elaborar análisis para la instalación de válvulas de relevo térmico en la línea de descarga de bomba (BA-B101).	Nodo 13		13.12	Mayor presión debido a cierre súbito o no programado de válvula FV, lo cual puede provocar fuga con incendio	EPC	С
ER.TARCUY.2022.38	Incluir en el PRE acciones a realizar para el evento de ruptura de línea de GLP en la TARC Cuyutlán.	Nodo 13		13.06	Menor presión debido a ruptura de línea por factores externos, lo cual puede provocar perdida de contención con incendio y/o explosión	Consultor	С
ER.TARCUY.2022.39	Realizar la filosofía de control y matriz causa - efecto del sistema de paro por emergencia que especifique la operación automática del sistema.	Nodo 13		13.06	Menor presión debido a ruptura de línea por factores externos, lo cual puede provocar perdida de contención con incendio y/o explosión	Consultor	С
ER.TARCUY.2022.40	Integrar acciones a realizar por presencia de Huracán en el manual de operaciones.	¿Qué Pasa Si?		1	Daño de tanques de almacenamient o por presencia de huracán	Operador	В
ER.TARCUY.2022.41	Integrar acciones a realizar por presencia de Huracán en Protocolo de Respuesta a Emergencia.	¿Qué Pasa Si?		1	Daño de tanques de almacenamient o por presencia de huracán	Operador	В
ER.TARCUY.2022.42	Elaborar Sistema de Administración de Seguridad Industrial, Seguridad Operativa y	¿Qué Pasa Si?	<u></u>	3	Daño a equipos y tuberías por presencia de huracán	Consultor	С

		ldentificació n del nodo,	Elemento del SASISOPA	Escenario de Riesgo			Nivel de Riesgo
No.	Recomendación	sistema, o km asociado a la recomendació n		No	Descripción	Responsable	
	Protección al Medio Ambiente (SASISOPA).						
ER.TARCUY.2022.43	Integrar acciones a realizar por presencia de Huracán en documento de políticas y lineamientos de operación del muelle./	¿Qué Pasa Si?		4	Afectación a la operación del muelle por presencia de huracán	Operador	С
ER.TARCUY.2022.44	Integrar acciones a realizar en caso de tormenta eléctrica en el manual de operaciones.	¿Qué Pasa Si?			Incendio en tanque de almacenamient o por tormenta eléctrica	Operador	С
ER.TARCUY.2022.45	Integrar acciones a realizar en caso de tormenta eléctrica en Protocolo de Respuesta a Emergencias.	¿Qué Pasa Si?		6	Incendio en tanque de almacenamient o por tormenta eléctrica	Consultor	С
ER.TARCUY.2022.46	Verificar la cobertura del sistema pararrayos en el área de estacionamiento de auto-tanques y carro-tanques.	¿Qué Pasa Si?		7	Incendio en Ilenaderas por tormenta eléctrica	EPC	С
ER.TARCUY.2022.47	Integrar acciones a realizar por presencia de tormenta eléctrica en documento de políticas y lineamientos de operación del muelle.	∂Qué Pasa Si?		8	Incendio en muelle por tormenta eléctrica	Operador	С

	_	Identificació n del nodo,	Elemento del SASISOPA	Escenario de Riesgo			de go
No.	Recomendación	sistema, o km	asociado a la recomendació n	No	Descripción	Responsable	Nivel de Riesgo
ER.TARCUY.2022.48	Elaborar el Programa para la Prevención de Accidentes (PPA).	¿Qué Pasa Si?		10	Afectaciones en la operación por incendio aledaño a la terminal	Consultor	С
ER.TARCUY.2022.49	Integrar acciones a realizar por incendio aledaño a la TAR en el PPA	¿Qué Pasa Si?		11	Incendio en área de Ilenaderas por incendio aledaño a la terminal	Consultor	С
ER.TARCUY.2022.50	Integrar en el PPA coordinación con Protección Civil Municipal.	¿Qué Pasa Si?		1 1	Incendio en área de Ilenaderas por incendio aledaño a la terminal	Consultor	C
ER.TARCUY.2022.51	Integrar acciones a realizar en caso de un sismo mayor a 5 grados en escala de Richter en Protocolo de Respuesta a Emergencias.	¿Qué Pasa Si?		12	Rupturas en tuberías con derrame por sismo mayor a 5 grados en escala de Richter	Consultor	С
ER.TARCUY.2022.52	Incluir revisión visual de la instalación operativa después del sismo en SASISOPA.	¿Qué Pasa Si?		14	Daño en la cimentación de los tanques sin derrame por sismo mayor a 5 grados en escala de Richter	Consultor	С
ER.TARCUY.2022.53	Incluir revisión visual de tanque y accesorios después del sismo en SASISOPA, y evaluar la necesidad de una inspección conforme a API 653.	¿Qué Pasa Si?		15	Daño en la cimentación de los tanques con derrame por sismo mayor a 5 grados en escala de Richter	Consultor	С

No.	Recomendación	Identificació n del nodo, sistema, o km	Elemento del SASISOPA asociado a la recomendació n	Escenario de Riesgo			go go
				No	Descripción	Responsable	Nivel de Riesgo
ER.TARCUY.2022.54	Incluir inspección conforme a API 653 después de incendio por sismo en SASISOPA.	¿Qué Pasa Si?		16	Daño en la cimentación de los tanques con derrame e incendio por sismo mayor a 5 grados en escala de Richter	Consultor	С
ER.TARCUY.2022.55	Elaborar protocolos acorde al código internacional de protección a buques e instalaciones portuarias (PBIP).	¿Qué Pasa Si?		17	Afectaciones operativas por actividad de grupos armados en las cercanías de la terminal	Operador	В
ER.TARCUY.2022.56	Integrar en el manual de operación de la terminal, acciones a realizar en caso de que se presente actividad de grupos armados en las cercanías de la TAR	¿Qué Pasa Si?		18	Daño colateral en la terminal por actividad de grupos armados en las cercanías de la terminal	Consultor	С
ER.TARCUY.2022.57	Elaborar análisis de la ampliación del estacionamiento interno de auto- tanques.	¿Qué Pasa Si?		19	Afectación a las operaciones por actos de vandalismo (intentos de robo, disturbios y actos sociales) contra la terminal	Dirección de regulación.	С
ER.TARCUY.2022.58	Integrar en el manual de operación de la terminal, acciones a realizar en caso de actos de vandalismo (intentos de robo, disturbios y actos sociales) contra la TAR.	¿Qué Pasa Si?		22	Derrame de producto con incendio derivado de ruptura de tubería de línea marina por factores externos	Consultor	С

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

El programa para la implementación y seguimiento de las recomendaciones derivadas del Análisis de Riesgo es mostrado en el "Anexo III.1" (Programa para la implementación y seguimiento de las recomendaciones).

III.1.1. Sistemas de seguridad

a. Equipos de seguridad

Equipos de la red contra incendio

Deberá contar con una red de agua contra incendio cumpliendo con la normatividad vigente, con hidrantes, monitores y tomas de camión estratégicamente ubicados de acuerdo con el análisis de riesgo de la instalación, mangueras, y recirculación de agua, sistema de bombeo principal, con monitores ubicados de acuerdo con el plan de emergencia derivado del análisis de riesgo de la instalación.

El sistema de bombeo de agua contra incendio deberá contar con dos bombas (o más de ser necesarias) una principal y otra de relevo operadas con motor de combustión interna con capacidad suficiente para atender el escenario más crítico de acuerdo con el análisis de riesgo, (a verificar por IPC de acuerdo con el cálculo hidráulico), contando con su tablero de control, con sistema automático en el arranque. Este conjunto deberá cumplir con la normatividad vigente, Bomba "jockey" para mantener la presión en la red de contra incendio. Las conexiones ramal-cabezal de succión y descarga de los equipos de bombeo deberán ser con accesorios a 45°, con el fin de evitar taponamientos hidráulicos.

Equipo móvil

El equipo móvil debe de seleccionarse de acuerdo con el Análisis de Riesgo de la Terminal y los posibles escenarios exteriores, así como la disponibilidad de auxilio externo; deben cumplir la normatividad vigente. Considerando en todo momento y de manera preferente la cobertura de los riesgos con equipo fijo y el escenario crítico de mínimo personal en la instalación. Esta Terminal deberá contar con un equipo móvil tipo servo comando si el estudio de riesgos lo justifica.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Otros equipos

Letreros de seguridad y extintores portátiles en toda la terminal, gabinetes para Mangueras y equipo de protección contra incendio distribuido en toda la terminal según análisis de riesgo.

b. Dispositivos de seguridad

Válvulas de seguridad

Se deben considerar válvulas de seguridad de desfogue, las cuales operarán por expansión térmica y deberán ser diseñadas en base a la normativa aplicable vigente. Estas válvulas se emplearán en las tuberías y descargarán en los tanques de almacenamiento.

Estaciones Manuales de Alarma

Deben considerarse Estaciones manuales de alarma por fuego en exteriores, instalando alarmas sectoriales (semáforos) con color verde, ámbar y rojo, a su vez identificándolos con alarmas de sonido sectoriales incluyendo generador de tonos.

Detectores de Humo

Se contará con un tablero de detección de humo para señales de los dispositivos de detección y alarma de humo en interior de instalaciones. Estos dispositivos estarán ubicados en las siguientes instalaciones:

- Oficinas administrativas
- Casetas de vigilancia
- Cuartos y casetas de control
- Subestaciones eléctricas y CCM's
- Cuartos de baterías
- Oficinas de mantenimiento
- Laboratorio de control de calidad
- Caseta de control de operación marítima

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Detectores de Mezclas Explosivas

Instalación de detectores de mezclas explosivas de hidrocarburos, localizados estratégicamente en:

- Llenaderas de autotanques y carrotanques
- Descargaderas de autotanques
- Brazos de carga marinos
- Patines de medición
- Áreas de bombas
- Área de tanques de almacenamiento de producto
- Descarga del paquete integral de tratamiento de aguas aceitosas
- Almacén de residuos peligrosos.

Detectores de flama

Deben de ser del tipo sensores UV/IR, localizados estratégicamente en:

- Llenaderas de autotanques y carrotanques
- Patines de medición
- Descargaderas de autotanques
- Áreas de bombas
- Almacén de residuos peligrosos
- Plataforma de operación de muelle marítimo
- Tanques de almacenamiento

Estas instalaciones deben apegarse a las normas vigentes aplicables.

c. Sistemas de seguridad

i. Sistema de paro por emergencia

Las Instalaciones de la Terminal deben ser diseñadas de forma tal que a falla o contingencias se realice un paro ordenado.

El Sistema de Paro de Emergencia de la Terminal de Almacenamiento y Reparto, debe ejecutar el paro ordenado en caso de que se presente una contingencia que ponga en riesgo la seguridad del personal, las instalaciones y/o el medio ambiente. Adicional a otras funciones de seguridad que se deriven del análisis de riesgo, se requiere que a través del sistema de paro de emergencia se efectúen las siguientes acciones de seguridad:

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

- Suspensión de las operaciones de llenaderas de autotanques y carrotanques
- Cierre de las válvulas de salida a llenaderas de autotanques y carrotanques de los tanques de almacenamiento.
- Suspensión de las operaciones de descarga de buque tanques, carrotanques y autotanques; y paro del equipo de bombeo en su caso.

El sistema de paro por emergencia deberá ser autónomo del sistema de operación monitoreo y control de la terminal.

ii. Sistema Contra Incendio

La terminal deberá contar con un sistema Automático de Control Contra Incendio SG&F el cual tiene como alcance proteger las siguientes áreas:

- Tanques de Almacenamiento.
- Llenaderas de carrotanques.
- Llenaderas de Autotanques.
- Fosa separadora de aceites
- Edificio Administrativo.
- Almacén de residuos peligrosos.
- Subestación Eléctrica.
- Laboratorio.
- Taller de mantenimiento y bodega
- Pasarela de acceso al muelle
- Plataforma de operación del muelle
- Apoyo al buque tanque en operación

Sistema de bombeo

El sistema de bombeo para la red de agua contra incendio deberá estar conformado por bombas principales y de relevo con la capacidad suficiente para atender el riesgo mayor identificado en el análisis Riesgo. La red de agua contra incendio se deberá mantener presurizada por medio de una bomba tipo "jockey". El diseño y selección del sistema de bombeo deberá ser conforme a la normativa aplicable vigente.

El sistema de bombeo de agua contra incendio deberá contar con dos bombas (o más de ser necesarias) una principal y otra de relevo operadas con motor de combustión interna con capacidad suficiente para atender el escenario más crítico de acuerdo con el análisis de riesgo, (a verificar por IPC de acuerdo al cálculo hidráulico), contando con su tablero de control, con sistema automático en el arranque. Este conjunto deberá cumplir con la

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

normatividad vigente, Bomba "jockey" para mantener la presión en la red de contra incendio. Las conexiones ramal-cabezal de succión y descarga de los equipos de bombeo deberán ser con accesorios a 45°, con el fin de evitar taponamientos hidráulicos.

Instalar cobertizo con estructura metálica para proteger tanto las bombas de contra incendio, como las del sistema hidroneumático para la red de agua de servicio.

Red de agua contra incendio

Considerar el Diseño de un sistema de captación pluvial que incluya una red de drenaje pluvial independiente al drenaje sanitario y drenaje aceitoso, que permita la captación y canalización de las precipitaciones pluviales hacia una laguna de captación, cuya capacidad se obtendrá del análisis de captación hidrológica del predio con el objeto de prever un suministro autónomo para los tanques del sistema contra incendio, así como la instalación de un sistema tipo paquete hidroneumático para el suministro de agua a las instalaciones.

La capacidad de flujo a manejar para la bomba de la laguna de captación debe ser congruente con la longitud y el diámetro de la tubería de la laguna a los tanques CI.

El sistema de almacenamiento, bombeo y distribución de agua contra incendio se instalará de conformidad a la normatividad vigente aplicable y conforme a los resultados de los análisis de riesgo del proyecto y constará de lo siguiente:

Se estima instalar dos tanques de agua contraincendios de una capacidad de 30 MB cada uno. No obstante, la capacidad de almacenamiento de agua contra incendio deberá ser diseñada en base a la normativa vigente aplicable y a la confiabilidad de la fuente de suministro. El almacenamiento de agua contra incendio se debe determinar en función del requerimiento total de agua que demanda la protección de la instalación que represente el Riesgo Mayor de la instalación para su atención durante 2 (dos) horas ininterrumpidas, considerando su reposición en menos de ocho horas; de no poder darse esta reposición se debe considerar la capacidad del tanque de agua para la atención durante 4 horas ininterrumpidas.

Para este fin se consideran tanques, con techo tipo cúpula fija soportado, con placa de acero al carbón la cual debe cumplir con la normativa aplicable vigente, con recubrimiento anticorrosivo en el interior y exterior del tanque, registro de purga, boquilla de 24" de diámetro para entrada hombre en el techo, (se debe realizar el análisis correspondiente para determinar el gasto y capacidad de agua en el riesgo mayor de acuerdo a norma

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

vigente) El tanque de agua contra incendio será abastecido a través de bombeo de pozo profundo, y deberá prever tomas al exterior de la terminal para el abastecimiento por camiones cisterna, considerando en el balance que el agua de reposición de la fuente interna, más la externa sean suficientes para reponer el agua de acuerdo a la normatividad aplicable vigente.

Confirmar que la capacidad del flujo a manejar por la bomba del pozo y el diámetro de la tubería del acueducto sea congruente con respecto al gasto considerado para las bombas de alimentación del tanque de agua contra incendio y agua de servicios.

La red de agua contra incendio de la Terminal deberá ser diseñada con forme a lo establecido en la normativa aplicable vigente y conforme a los resultados de los análisis Riesgo del proyecto.

Red de tubería contra incendio desde la casa de bombas contra incendio, debe considerar el suministro de agua CI a la zona de los patines de medición de transferencia de custodia en el Muelle, así como el suministro a los hidrantes de apoyo en el muelle.

Dentro del alcance del desarrollo de la ingeniería se deberá diseñar una Red de circuitos de tuberías con su sistema de bombeo que permitan disponer desde el muelle con agua de mar para el combate a la eventualidad determinada como Riesgo Mayor. Para este fin se deberán analizar las siguientes alternativas:

- a). Bombeo directo de agua de mar a la red CI, debiendo preverse para este caso sectorizar la red CI en circuitos independientes específicos para este sistema, por ejemplo, podría ser únicamente al circuito de los anillos de enfriamiento de los Tanques de almacenamiento si este fuera el Riesgo Mayor determinado en el Análisis de Riesgo.
- b). Bombeo Para reabastecer con agua de mar los niveles de los tanques contra incendio.

En cualquier caso, las tuberías válvulas y accesorios del circuito de agua de mar deberán cumplir con la normatividad, especificaciones y/o recomendaciones para uso de agua de mar.

Considerar una Red de tubería para el sistema de proporción de espuma desde la casa de bombas contra incendio hasta la zona del Muelle, o en su defecto la instalación del suministro de espuma en la plataforma de operación del muelle, contemplando las facilidades para el suministro periódico del agente espumante en el punto de almacenamiento seleccionado.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

Paquete de presión balanceada

Deberá contar con un paquete de presión balanceada que cuente con su tanque de almacenamiento con material resistente al líquido espumante tipo AR-AFFF con capacidad suficiente para 4 horas de operación continua para el riesgo mayor (NOM -006-ASEA 2017), se deberá incluir inyección superficial e inyección subsuperficial a los tanques de almacenamiento de combustibles, se deberá incluir un recubrimiento externo e interno adecuado para evitar la corrosión en el mismo tomando en cuenta la normatividad aplicable vigente.

Sistema de Gas y Fuego

La operación del sistema contraincendios SG&F se hará en forma automática, independiente del sistema SDMC. Tendrá un tablero de control para abrir y cerrar las válvulas motorizadas arranque y paro de motores eléctricos tanto de las bombas contra incendio como las del equipo de presión balanceada.

Los sistemas SDMC y SG&F son una parte integral del proyecto de la terminal de almacenamiento y reparto y deberá incluirse la Ingeniería y construcción de un cuarto de control central y de alojamiento de gabinetes que albergaran los equipos de cómputo y los equipos del subsistema de control Supervisorio, equipos de control considerados en el SDMC incluyendo los equipos de cómputo, control y respaldo de energía del SG&F. La ingeniería deberá incluir el cálculo para el dimensionamiento de aire acondicionado, sistemas de energía interrumpible (UPS) y sistemas de tierras lo cual debe estar conforme a la normativa vigente aplicable.

Sistema de aspersión

Se requiere sistema de aspersión agua-espuma en área de tanques, llenaderas y descargaderas de auto-tanques, carro-tanques y área de bombas.

Elaboró:	Revisó:	Revisión:	Septiembre
G.R.M.	Porter	D	2023

Sistema de protección a base de agente limpio

Se requiere Sistema de protección a base de agente limpio en edificio administrativo y cuarto de control, Cuarto de equipos de control, CCM y cuarto de baterías.

d. Planos

Código de Archivo	Código de Documento	Descripción
POR-TARC-SEG-SFG-002 REV-A	POR-TARC-SEG-SFG-002	Arquitectura General SFG TAR Cuyutlán
SCI-001 REV-A	SCI-001	Diagrama de Tubería e Instrumentación – Sistema Contra Incendio

Tabla 21. Planos SFG.

El alcance de la ingeniería actual no contiene la información sobre la localización de los equipos de seguridad (extintores, hidrantes monitores, válvulas de diluvio, etc.), ni la localización de los dispositivos de seguridad (detectores de fuego, detectores de mezclas explosivas, detectores de humo, semáforos, etc.).

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

III.1.2. Medidas preventivas

Los criterios de diseño y normas utilizadas para el proyecto con base a las características del sitio y a la susceptibilidad de la zona a fenómenos naturales y efectos meteorológicos adversos, indicando el análisis y descripción de áreas identificadas como vulnerables (Terremotos o sismicidad, corrimientos de tierra, derrumbes o hundimientos, inundaciones, vulcanología, fallas geológicas, fracturas geológicas, deslizamientos, entre otros), son detalladas en el capítulo I.1 "Bases de diseño".

La TARC Cuyutlán contará con procedimientos operacionales y procedimientos de mantenimiento preventivo, así como los programas de mantenimiento y capacitación correspondientes.

En el tema de seguridad y riesgo, la TARC Cuyutlán tiene contemplado en etapas posteriores la elaboración de los documentos siguientes:

- Sistema de Administración de Seguridad Industrial, Seguridad Operativa y Protección al Medio Ambiente (SASISOPA).
- Protocolo de Respuesta a Emergencias (PRE).
- Programa para la Prevención de Accidentes (PPA).
- Análisis de Riesgo para el Sector Hidrocarburos (ARSH).

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

IV. RESUMEN

IV.1. SEÑALAR LAS CONCLUSIONES DEL ESTUDIO DE RIESGO AMBIENTAL

IV.2. HACER UN RESUMEN DE LA SITUACIÓN GENERAL QUE PRESENTA EL PROYECTO EN MATERIA DE RIESGO AMBIENTAL

Derivado del estudio de riesgo elaborado para la Terminal de Almacenamiento y Reparto de Combustibles Cuyutlán en la etapa de diseño, el cual fue realizado por medio de metodologías cualitativas y cuantitativas, empleando la metodología HazOp para el proceso, ¿Qué Pasa Sí? para los factores externos y software PHAST (última versión) para el análisis de consecuencias, se tienen las conclusiones siguientes:

Con la aplicación de la metodología HazOp para el proceso de la terminal fueron analizados 3 productos (gasolinas, diésel y gas LP), obteniendo en su totalidad 19 nodos, se identificaron y evaluaron 35 escenarios potenciales de riesgo que pueden causar afectación al personal y medio ambiente. La aplicación de la técnica de identificación de peligros, concluyó que, entre las causas más probables se encuentran los derrames de hidrocarburo por diversas causas, por lo cual es importante el desarrollo de procedimientos operativos, de capacitación, comunicación y emergencia, así como la implementación sistema de paro por emergencia y programas de mantenimiento.

Para los factores externos que podrían generar riesgo en la terminal se aplicó la metodología ¿Qué Pasa Si?, donde, se analizó 1 nodo que contempla la totalidad de la terminal, identificando riesgos fuera del proceso como son: factores externos, falla o interrupción de servicios, fenómenos naturales, fenómenos socio-organizativos, etc., derivado de la identificación se recomienda elaborar planes de ayuda mutua, protocolos de respuesta a emergencia, así como un plan de prevención de accidentes con el fin de que la terminal tenga la capacidad de atender un evento provocado por factores externos.

En la Jerarquización de riesgo se empleó matrices de 6 x 6 para cada uno de los receptores de riesgo (personal, población, medio ambiente, producción e instalación), con un total de escenarios jerarquizados, de los cuales están ubicados en zona tolerable y equivalen al % del total de los escenarios identificados, escenarios fueron ubicados en zona ALARP con el % del total de los escenarios identificados, escenarios están ubicados en zona indeseable y ninguno en zona no tolerable. Por lo tanto, basándonos en el riesgo mayor, la terminal queda ubicada en una zona ALARP (aceptable con controles).

Para la evaluación cuantitativa, se empleó el simulador PHAST versión 8.22, donde fueron simulados 35 eventos identificados previamente, donde tenemos que el Escenario Peor Caso (EPC) es por ruptura de tanque (gasolinas), debido a pérdida de contención por factores

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

externos, el cual genera evento Late Pool Fire que alcanza m en la zona de alto riesgo con daño a equipos y m en la zona de alto riesgo. La descripción de las posibles afectaciones a los receptores (personal, población, medio ambiente e instalación/producción) son descritas en el "Anexo II.3.2 (Análisis de vulnerabilidad)" del presente estudio.

Es importante mencionar que el Escenario Peor Caso, solo se presentaría en las peores condiciones atmosféricas, sin considerar la existencia de protecciones y medidas de seguridad, por lo tanto, es indispensable que la Terminal de Almacenamiento y Reparto de Combustibles Cuyutlán cuente con los sistemas de seguridad, salvaguardas y medidas de mitigación que cumplan con los aspectos de seguridad industrial, seguridad operativa y protección al ambiente, y para ello, es importante cumplir con las recomendaciones técnico-operativas derivadas del presente estudio.

Derivado del presente análisis, actualmente el nivel de riesgo general de la terminal en su etapa de diseño está ubicado en zona ALARP (tipo C).

Es recomendable elaborar el programa de mantenimiento de los sistemas de seguridad e implementación de las medidas de seguridad para reducir la probabilidad de ocurrencia y/o consecuencia de riesgo, así como la elaboración del Protocolo de Respuesta a Emergencias (PRE), Programa para la Prevención de Accidentes (PPA) y Planes de Ayuda Mutua, e incluir los escenarios de riesgo identificados en el presente estudio.

IV.3. PRESENTAR EL INFORME TÉCNICO DEBIDAMENTE LLENADO

En el "Anexo IV.1" (Informe técnico) se presenta las tablas que componen el informe técnico del presente Estudio de Riesgo.

Elaboró: Revisó: Revisión: Septiembre G.R.M. Porter D 2023

V. IDENTIFICACIÓN DE LOS INSTRUMENTOS METODOLÓGICOS Y ELEMENTOS TÉCNICOS QUE SUSTENTAN LA INFORMACIÓN SEÑALADA EN EL ESTUDIO DE RIESGO AMBIENTAL

V.1. FORMATOS DE PRESENTACIÓN

V.1.1. Planos de localización

EL plano de localización de la Terminal de Almacenamiento de Combustibles Cuyutlán está ubicado en el "Anexo I.1.1" (Plano de arreglo general).

V.1.2. Fotografías

Se elaboró un reporte fotográfico con fotos del área en estudio donde será ubicada la Terminal de Almacenamiento de Combustibles Cuyutlán, el cual se encentra en el "Anexo I.1.3" (Reporte Fotográfico).